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Abstract—Hearing-impaired listeners usually have troubles 

attending target talker in multi-talker scenes, even with hearing 

aids (HAs). The problem can be solved with eye-gaze steering 

HAs, which require listeners eye-gazing on the target. In a 

situation where head rotates, eye-gaze is subject to both behav-

iors of saccade and head rotation. However, existing methods of 

eye-gaze estimation did not work reliably, since the listener’s 

strategy of eye-gaze varies and measurements of the two behav-

iors were not properly combined. Besides, existing methods 

were based on hand-craft features, which could overlook some 

important information. In this paper, a head-fixed and a head-

free experiment were conducted. We used horizontal electro-

oculography (HEOG) and neck electro-myography (NEMG), 

which separately measured saccade and head rotation to jointly 

estimate eye-gaze. Besides traditional classifier and hand-craft 

features, deep neural networks (DNN) were introduced to auto-

matically extract features from intact waveforms. Evaluation 

results showed that when the input was HEOG with inertial 

measurement unit, the best performance of our proposed DNN 

classifiers achieved 93.3%; and when HEOG was with NEMG 

together, the accuracy reached 72.6%, higher than that with 

HEOG (71.0%) or NEMG (35.7%) alone. These results indicat-

ed the feasibility to estimate eye-gaze with HEOG and NEMG.   
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I. INTRODUCTION

Hearing-impaired (HI) listeners usually have troubles to 
attend to the intended talker in a complex auditory scene with 
multiple simultaneous talkers and background noises [1]. 
Advanced hearing aids (HAs) could suppress background 
noises to a certain degree, by utilizing technologies such as 
noise reduction algorithms and directional microphones (i.e., 
beamforming) [2]. However, noise reduction algorithms usu-
ally need to assume the acoustic distribution of the target and 
background sounds and this could be problematic in multi-
talker scenarios where listeners could switch the attentional 
target. The beamforming technology is usually with forward-
pointing directional microphones or microphone array, which 
could enhance signals in front of the listener. Nonetheless, the 
benefit is limited since listeners do not usually orient their 
heads toward the target sound [3], [4]. In general, HAs usually 
fail to amplify the target speech stream without amplifying 
other streams in multi-talker scenarios, because they are 
unaware of listener’s attentional target.  

In face-to-face conversational scenes, auditory and visual 
cues are both available. It is suggested that the visual 
cues (such as lip-reading) obtained by eye-gazing the target 
talker is beneficial to speech perception, especially for HI 
listeners [5], [6]. Therefore, when the auditory attended 
target switches between talkers, the listener would saccade 
and rotate head to direct the eye-gaze accordingly [7], [8]. 
Based on these studies, eye-gaze was treated as an indicator 
of the attended target and used to steer HAs [9]–[15]. For 
example, an eye-tracker-based eye-gaze selection of auditory 
target was reported to outper-

form the button-pressing-based manual selection, for both the 
measurement of target recalling and switching time [9]. In 
another study [13], an eye-gaze steering HA was found to be 
able to improve the speech intelligibility for HI listeners 
compared to non-steering one. Similar results could also be 
found in other studies [11], [15].  

To estimate the eye-gaze, eye-tracker is the most 
commonly used equipment, which has high spatial resolution 
and low latency. However, it is usually a standalone system, 
requires the user’s head to be stabilized and thus has low 
compatibility with HAs. Electrooculography (EOG) is another 
measurement for eye-gaze estimation [8], [14], [16], [17]. 
EOG signal is usually recorded by bipolar electrodes placed at 
the vicinity of the eyes, which measures the difference of 
potential evoked by eyeballs’ movement, such as saccade [18]. 
For example, horizontal saccades would evoke prominent hor-
izontal EOG (HEOG) and the amplitude of HEOG increases 
with the range of saccade [12], [19]. When the head was fixed, 
the hand-crafted features of HEOG (e.g., the polarity and peak 
value of waveform) were used to estimate the change of eye-
gaze. A decision tree-based classifier with empirical thresh-
olds was used to determine the change of eye-gaze, and the 
accuracy was about 65% for three pre-designed spatial-
separated sources [12]. However, when the head is free of ro-
tating, the estimation would fail since the strategy of saccade 
varies and the HEOG feature changes in this case. This 
suggested the importance of taking the head rotation into 
consideration for eye-gaze estimation. In a more recent study 
[14], a regression model was proposed to estimate the absolute 
eye-gaze using HEOG and head movement data recorded by 
an inertial measurement unit (IMU) fixed on listener’s head. 
The regression model mapped the HEOG and IMU signals to 
the eye-gaze direction with a function, in which several 
constant parameters needed to be fitted. The estimation was 
reliable for the head-fixed condition but was unreliable for the 
head-free condition. This is likely because the fitted model 
was fixed and the authors assumed it applied to data of all 
trials. However, in face-to-face conversations, listeners usual-
ly eye-gaze at the target talker but not always with the head 
orienting to it [7], [15], which indicates the strategy of both 
saccade and head-rotation vary in realistic scenarios. These 
results suggested that eye-gaze estimation methods adopting 
the hand-crafted features or fixed-form regression function 
were lacked of generalization.  

Besides the IMU, the neck electromyography (NEMG) 
recorded from the sternocleidomastoid (SCM) muscle can 
also be used to measure the horizontal head rotation (also 
called as yaw) [20], [21]. It was found that, when the head 
turned to right, EMG amplitudes of the left SCM increased 
while that of the right SCM remained unchanged, and vice 
versa [21]. The advantage of utilizing NEMG for head-
rotation estimation is its high compatibility with HEOG equip-
ment. However, incorporating NEMG with HEOG to estimate 
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the eye-gaze has been rarely studied, and the feasibility still 
remained unknown. 

In this paper, we aim to investigate the eye-gaze estimation 
in consideration of saccade and head-rotation behaviors, using 
measurement of HEOG and NEMG. Experiments with head-
fixed or head-free condition are separately conducted to verify 
the feasibility of these measurements. Moreover, advanced 
classifiers, such as deep neural network (DNN) are introduced 
to obtain a more reliable combination of the measurements.  

II. EXPERIMENT 1 (HEAD-FIXED) 

A. Participants and Experimental Setup 

4 subjects (1 female, age range 22–25 years) with normal 
or corrected-normal vision participated in the experiment. All 
subjects were right-handed, reported no neurological illness 
and given informed consent approved by the Peking Univer-
sity Institutional Review Board. 

Subjects seated in an acoustically and electrically shielded 
booth with their head fixed by a chinrest. In front of the 
chinrest at a distance of 0.4 m, a monitor was placed. In the 
experiment, a red dot displayed on the screen  at the same 
horizontal level as the subject’s eyes served as the stimulus. 
The red dot switched for every 5 s between 2 out of 5 pre-
allocated positions with -45°, -30°, 0°, +30° and +45° azimuth. 
The subjects were instructed to eye-gaze at the red dot and 
switch visual attention by saccade. By pairwise combination 
of the 5 positions, 20 switching conditions with different 
starting and ending positions were presented, corresponding 

to 12 different eye-gaze variations (∆=±15°, ±30°, ±45°, 

±60°, ±75° and ±90°). For each subject, there were 10 trials 

to be conducted, and the each trial lasted for 105 s.  

B. HEOG Recordings 

Continuous HEOG data were acquired by a NeuroScan 
system, using a pair of bipolar electrodes located at the left 
and right temples, with the midforehead as GND and the nose-
tip as reference. HEOG data were online bandpass filtered 
(0.15–100 Hz), digitized (250 Hz sampling rate), and stored 
for offline analysis. Along with the HEOG recording, syn-
chronization triggers indicating the instants of red dot switch-
ing were also recorded. 

C. Signal Preprocessing and Feature Analysis 

HEOG data preprocessing was performed on MATLAB. 
The preprocessing was similar as described in [12], [13], [17]. 
For each trial, 20 5-s segments of HEOG waveform corre-
sponding to 20 switching conditions were firstly extracted 
according to the triggers. Each segment  was clipped from 0.5 
s before to 4.5 s after the switch. As suggested in [19], HEOG 
fluctuated slowly in time domain with its main component 

located in the low frequency band, the segments were then 
downsampled (64 Hz) and lowpass filtered (10 Hz). Finally, 
to ensure the amplitudes of HEOG waveforms were compara-
ble across subjects, the segments were normalized within 
subject to the range [-1, 1]. 

Fig. 1(a) shows the averaged HEOG waveforms for all 
conditions of eye-gaze variation. The lower standard deviation 
indicates that the shape of HEOG waveform is similar across 
subjects and trials for head-fixed condition. Across eye-gaze 
variations, the shapes of HEOG waveforms are also similar, 
except for the amplitudes. The fluctuation of waveforms all 
start at about 0.2 s after the switching instruction and reach 
maximum at about 0.4 s, and then gradually decrease to the 
initial level. The polarity of the peak indicates the saccade 
direction, i.e.,  positive and negative values corresponded to 
left and right saccades, respectively. As showed in Fig. 1(b), 
the relationship between eye-gaze variation and the peak value 
of waveform is nearly linear. The peak values increase with 
eye-gaze variations. These results indicate the feasibility to 
estimate the eye-gaze variations using HEOG for head-fixed 
condition.  

D. Eye-gaze Estimation Algorithm 

As the analyses above, peak polarity and absolute value 
were used as hand-crafted features of HEOG for classifying 
eye-gaze variations. The polarity could indicate the saccade 
direction (left or right) and the absolute value could indicate 
the amplitude of saccade. Therefore, the two features were 
extracted for each HEOG segment, and a support vector 
machine (SVM) classifier was trained and tested, taking the 
features as input and corresponding eye-gaze variations as 
output. To solve the issue that hand-crafted features are lacked 
of generalization, we also used DNN to automatically extract 
features from intact HEOG waveform. A DNN classifier with 
the long short-term memory (LSTM) architecture was 
proposed, taking HEOG waveform as input and eye-gaze 
variations as output. The architecture consisted of 1-layer 
LSTM (64 units), 1-layer fully-connection (12 units) and 
softmax function. The categorical cross-entropy was used as 
the loss function for training. Hyperparameters of the network, 
such as the learning rate and batch size were all optimized by 
grid-search in a preliminary experiment. 

The HEOG data (20 segments/trial × 10 trials/subject × 4 
subjects = 800 segments) were allocated into training (80%, 
640 segments) and testing (20%, 160 segments) set with all 
eye-gaze variations equally distributed. Due to the limited size 
of the dataset,  and to avoid the effect of dataset allocation on 
the classification accuracy, the allocation was repeated for 100 
times randomly, as well as the training and testing sessions. 
The SVM model was implemented by the Scikit-learn library 
[22] and the LSTM model was implemented based on the 
Keras platform [23]. 

E. Results 

The overall accuracies of the SVM and LSTM classifier 
were 81.8±2.2% and 90.9±2.0%, respectively. The better 
performance of the LSTM classifier suggested the advantage 
of LSTM in series modeling and automatic feature extraction.   

III. EXPERIMENT 2 (HEAD-FREE) 

A. Participants and Experimental Setup 

17 subjects (4 female, age range 21–28 years) with normal 
or corrected-normal vision participated in the experiment. All 

 

Fig. 1. (a) Normalized HEOG waveform and (b) averaged peak value 

of HEOG for different eye-gaze variations.  
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subjects were right-handed, reported no neurological illness 
and given informed consent approved by the Peking Univer-
sity Institutional Review Board. 

 The experimental environment was illustrated in Fig. 2. 
Subjects seated in an acoustically and electrically shielded 
booth. In front of the subjects with a distance of 0.85 m, two 
monitors were symmetrically placed on the left and right with 
a certain of spatial separation. Similar to experiment 1, a red 
dot served as the stimulus. It would appear on either of the two 
monitors and switch its position between the two for every 5 
s. Subjects were instructed to eye-gaze at the red dot and were 
allowed to saccade and rotate head freely during the presen-
tation. For each trial, two fixed positions were used to display 
the red dot, one for each monitor, and the red dot switched 
between the two positions for 40 times. There were 6 potential 
azimuths ( -45°, -30°, -15°, +15°, +30°, and +45°) for the red 
dot, resulting in 6 different eye-gaze variation conditions (∆=

±30°, ±60° and ±90°). For each subject, 3 trials were 

organized according to the absolute variation of the eye-gaze 
variation, and each trial lasted for 205 s. 

B.  HEOG, NEMG and IMU Recordings 

HEOG and NEMG were also acquired by a NeuroScan 
system. The montage of HEOG, reference and GND elec-
trodes were the same as in experiment 1, and the placement of 
other sensors was shown in Fig. 2. Referring to previous 
studies [21], [24] , two pairs of bipolar electrodes were used 
to record the NEMG generated by the left and right SCM. 
Each pair was placed along the fibers of one SCM with a 20 
mm inter-electrodes distance. HEOG and NEMG were 
sampled at 1 kHz. To record head-rotating related signals, a 9-
axis inertial measurement unit (IMU) was used, which was 
attached to subject’s head via a headset. The IMU worked at 
a sampling rate of 30 Hz.  Along with HEOG, NEMG and 
IMU data, synchronization triggers were also recorded.  

C. Signal Preprocessing and Feature Analysis 

Similar to experiment 1, for each trial, HEOG, NEMG and 
IMU data were spitted into 40 5-s segments. HEOG was pre-
processed in the same way as in experiment 1. As suggested 
in [20], [21], segments of NEMG were downsampled (500 
Hz), bandpass filtered (40–250 Hz) and normalized within 
subject. IMU data were processed using Madgwick algorithm 
[25] to estimate the horizontal head rotation (also called as 
yaw) and were also normalized.  

Compared to experiment 1, HEOG had similar patterns in 
the head-free experiment (not shown). For IMU data, the 
normalized head yaw for different eye-gaze variations was 
showed in Fig. 3. The value of head yaw changed significantly 
about 0.2 s after the switching instruction and reached stability 
at about 1 s. The maximum value of the absolute head yaw 
increased with the eye-gaze variation and the polarity indicat-
ed head rotation direction. It should be mentioned that, the 
observed drift which might be related to hardware issue could 
be overlooked due to the short duration of head rotation. As 
shown in Fig. 4(a), the patterns of NEMG were as expected. 
When the head turned left, the EMG amplitude of the left 
SCM decreased and that of the right SCM increased, and vice 
versa. To quantify such a pattern of different eye-gaze varia-
tions, short-term RMS was calculated (0.1 s frame with 0.05 s 
overlap) and normalized (the first 0.5 s as the reference). As 
referring to Fig. 4(b), when the head turned left, the short-term 
RMS of the right SCM began to rise significantly about 0.1 s 
after the switching instruction, reached the maximum value at 
about 0.4 s. Similar to HEOG and head yaws, the maximum 
values of short-term RMS of NEMG increased with the 
increment of the absolute eye-gaze variation. These findings 
were similar to the previous study [21] and indicated the 
feasibility of using NEMG to measure head rotation. However, 
it should be noted that the standard deviations of these 
waveforms (HEOG, head yaw and NEMG) were non-
negligible, which indicated that the saccade and head rotation 
strategy varied across subjects or trials. Therefore, it is more 
appropriate to estimate eye-gaze with bivariate input (e.g., 
HEOG+NEMG, and HEOG+IMU) which takes both saccade 
and head rotation into consideration, rather than univariate 
input (e.g., HEOG, NEMG or IMU data).  

D. Eye-gaze Estimation Algorithm 

SVM was used as the feature-based classifier, with hand-
crafted features of HEOG, NEMG and IMU as the input. 
HEOG feature was the same as experiment 1.The peaks of the 
short-term RMS value of NEMG of both left and right SCMs 

 

Fig. 4. (a) Individual NEMG waveforms, and (b) normalized short-

term RMS value of NEMG for different eye-gaze variations. 

 

Fig. 2. The experimental environment and placement of sensors. 

 

Fig. 3. Normalized head yaw for different eye-gaze variations. 
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were used as NEMG features. The variation of the yaw value 
was used as the IMU feature. No feature selection procedure 
was further applied. Three commonly used DNN architectures 
were utilized as the waveform-based classifiers, i.e., fully-
connected network (FCN), LSTM and convolutional neural 
network (CNN). FCN is the most basic DNN, LSTM is good 
at time series modeling, and CNN has a strength in feature 
extraction. For these classifiers, intact waveforms directly 
served as input. The FCN architecture consisted of flatten, 1-
layer fully-connection (6 units) and softmax function. The 
LSTM architecture was the same as experiment 1. The CNN 
architecture consisted of 1-layer 1-D convolution (5 kernels, 
size of 16), average-pooling, 1-layer fully-connection (6 units) 
and softmax function. Hyperparameters were optimized by 
preliminary experiments. For all classifiers, both univariate 
input (HEOG, NEMG or IMU data) and bivariate input 
(HEOG+NEMG, HEOG+IMU data) were used.  

The HEOG, NEMG and IMU data (40 segments/trial × 3 
trials/subject × 17 subjects = 2040 segments) were allocated 
into training (80%, 1632 segments) and testing (20%, 408 
segments) set with all variation conditions equally distributed. 
The dataset allocation was repeated for 100 times randomly, 
as well as training and testing sessions.  

E. Results 

Table I shows the classification results. For the feature-
based SVM classifier, the accuracy when using univariate 
HEOG (67.0%) was lower than that of the head-fixed 
condition (81.8%). As expected, when using bivariate input, 
the performance was better than when using any univariate of 
the bivariate input (HEOG+NEMG, 68.6%, HEOG, 67.0%, 
NEMG, 35.1%; HEOG+IMU, 89.6%, HEOG, 67.0%, IMU, 
70.5%). The results confirmed that it was insufficient to esti-
mate eye-gaze using only saccade (HEOG) or head rotation 
(IMU data, NEMG) related information, and the combination 
of these information is significantly beneficial. It should be 
noted that when using NEMG instead of IMU data, the 
accuracy was much lower, which might due to a low quality 
of NEMG signals (shown by the large standard variation in 
Fig. 4(b)). 

For the waveform-based DNN classifier, consistent with 
feature-based SVM classifier, the performance of bivariate 
input was better than when using any univariate of the 
bivariate input for all of the three classifiers. Comparing 
classification accuracies among different classifiers, SVM 
classifier had a similar performance to the FCN classifier, but 
was better than the LSTM classifier. This is likely because the 
LSTM is sensitive to temporal information and thus suscepti-
ble to the low-quality NEMG signals. However, the SVM 
classifier was based on hand-crafted features designed with 
prior-knowledge, which made it more robust to noise. The 
CNN classifier basically outperformed all other classifiers, 
probably because CNN observed the signals in a longer 
window at once and had more advantage at feature extracting, 
and thus more robust to noise.  

IV. DISCUSSION 

As far as we know, this is the first study of eye-gaze 
estimation using HEOG and NEMG. For the head-fixed 
condition, the proposed model could discriminate between 
12eye-gaze variations (90% accuracy).  For the head-free 
condition, our proposed classification model also worked 
reliably (waveform-based FCN: 71.8%) when using HEOG 
and NEMG, but the accuracy dropped dramatically when 

TABLE I.  CLASSIFICATION RESULTS FOR HEAD-FREE CONDITION. 

             Feature-based Waveform-based 

SVM FCN LSTM CNN 

HEOG 67.0±1.8  65.3±1.6 49.3±4.4 71.0±2.1 

NEMG 35.1±1.8 41.6±2.4 35.3±2.2 35.7±1.8 

IMU 70.5±2.0 70.8±2.1 56.5±2.8 66.2±2.0 

HEOG+NEMG 68.6±1.9 71.8±1.9 53.7±2.7 72.6±1.7 

HEOG+IMU 89.6±1.4 87.9±1.5 76.5±3.2 93.3±1.3 

 

using only HEOG or NEMG data. This proved that partici-
pants’ eye gazing strategies would be more complex and 
changeable. As suggested in [26], in natural situations, people 
tended to move their eyes alone for small shifts (<10°) and 
move their eyes and heads for larger shifts. In an auditory 
scene, people usually move their heads to improve speech 
intelligibility in noise [27] or when the target was unexpected 
[28]. As showed in Fig. 3 and Fig. 4(b), the standard 
deviations of head yaw or NEMG RMS for each eye-gaze 
variation condition were large, which showed that the eye-
gazing strategies were different across-subjects or even 
across-trials. The complexity of eye gazing strategy made it 
necessary to consider both saccade and head movement when 
estimating eye-gaze for head-free condition.  

As expected, when replacing NEMG with IMU data, the 
eye-gaze classification performance improved significantly 
for all classifiers. This could be attributed to low quality of 
NEMG that was not as reliable as IMU data. A negative 
example of individual NEMG signals was showed in Fig. 5. 
When head turned left or right, the value of the left or right 
SCM EMG was almost the same, which was unexpected. The 
low quality could result from the unstable attachment between 
electrode and the skin above the superficial SCM, since SCM 
would contract and stretch a lot when rotating head. This 
unreliability might be solved by using implanted electrodes or 
more recording electrodes [21].  

It should be noted that the model proposed in the current 
study output a pre-designed eye-gaze variation by using 
constant length data. The absolute eye-gaze can be calculated 
by summing the initial value with the variation which may 
bring cumulative error. In practical application, the algorithm 
did not know the instant when the switching happened, thus a 
switching detection was needed. Meanwhile, the spatial res-
olution was relatively low due to the limited designed eye-
gaze variation in the experiment.  In the future work, collect-
ing data with more eye-gaze variations, comparing with 
results of eye-tracker and investigating the generalization of 
models are worth preforming. 

 

Fig. 5. Negative examples of individual NEMG waveforms.  

Input 

Classifier  
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V. CONCLUSION 

In this paper, we took both saccade and head rotation into 
consideration for eye-gaze estimation, which was measured 
with HEOG and NEMG, respectively. SVM classifier was 
applied with hand-crafted features, and waveform-based DNN 
classifiers were further introduced to obtain a more reliable 
result. The main findings include, (1) for head-fixed condition, 
eye-gaze could be estimated reliably by saccade related 
signals (e.g., HEOG); (2) for head-free condition, an accurate 
eye-gaze estimation required a combination of the saccade and 
head-rotation related signals; (3) NEMG could serve as a 
measurement of head-rotation, but is limited by its data quality; 
and (4) DNN classifiers with intact waveform as input could 
improve the performance of estimation than with hand-crafted 
feature as input. These findings could be used as a guidance 
for the design of eye-gaze steering HAs.  
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