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has been postulated that in community-dwelling older adults, 

the simultaneous consideration of both usual and maximum 

walking speed, as with GSR, could increase the accuracy of 

the identification of frailty [5]. Indeed, in older adults, frailty 

is defined as a state of reduced physiological reserve 

increasing the risk of decompensation and adverse clinical 

outcomes triggered by relatively minor stressors [6]. In 

women aged over 70 years, a stronger association was seen 

between gait reserve and frailty than for usual gait speed 

alone [7]. However, there have been no studies attempting to 

model predictors of GSR in a large sample of community-

dwelling older adults where many demographic, 

anthropometric and clinical features were measured across 

multiple physiological systems. In the present study, we 

developed a regression-based machine learning pipeline for 

the discovery of clinically relevant predictors of GSR across 

multiple physiological systems using data from The Irish 

Longitudinal Study on Ageing (TILDA). 

II. METHODS

A. Design and setting

We analyzed data from adults aged 50+ from Wave 3 of

TILDA, a population-based longitudinal study of ageing. 

TILDA study design, as well as the full cohort profile, have 

been previously described in detail [8, 9]. Wave 3 data 

collection took place in 2014 and 2015 and included a 

computer-assisted personal interview conducted by social 

interviewers in the participants’ home, a self-completion 

questionnaire completed in the participants’ own time and a 

detailed suite of technology-aided health assessments 

conducted by trained research nurses at a dedicated health 

centre. Ethical approval was obtained from the Faculty of 

Health Sciences Research Ethics Committee at Trinity 

College Dublin, Ireland. All participants provided written 

informed consent.   
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I. INTRODUCTION

Gait speed is a measure of general fitness and is 

associated with the ability  to meet occupational demands in 

younger adults [1] and functional decline and morbidity in 

older adults [2, 3]. Even though comfortable walking speed 

and maximum walking speed are significantly intercorrelated 

[4], changing from comfortable (or usual) speed to maximum 

speed requires a general effort across many body systems. We 

propose that the difference between these two gait speeds, 

which we refer to here as gait speed reserve (GSR: maximum 

minus usual gait speed), may be a useful proxy measure of 

physiological reserve. There is increasing medical interest to 

understand what the main determinants of physiological 

reserve are and ways in which to quantify it. In addition, it 
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B. Measures 

At Wave 3 of TILDA, gait speed was measured as part of 

a health centre assessment. Measurements were made using a 

4.88 m computerized walkway (GAITRite, CIR Systems, 

NY, USA). A two-meter space before and after the walkway 

was used for acceleration and deceleration. Participants were 

first asked to walk at their normal (usual) pace and then as 

fast as they safely could (maximum). Two walking trials were 

obtained in each condition and the mean value for each was 

used in this analysis. GSR was defined as maximum gait 

speed – usual gait speed. 

 

Other measures collected included demographics (age, 

sex), sociodemographic information (level of education), 

anthropometrics (body mass index (BMI)), self-reported 

medical history (medical conditions, medications), 

behavioral health (smoking status), difficulty with 

instrumental activities of daily living, psychological variables 

(anxiety, fear of falling), and two paper-based cognitive 

assessments: the Montreal Cognitive Assessment (MOCA) 

and the Mini Mental State Examination (MMSE). 

Participants also underwent performance-based physical 

assessments including a five chair stands test (for the 

assessment of lower limb muscle strength), dynamometer 

handgrip strength (as a measure of upper limb strength), a 

visual acuity test, and blood pressure and heart rate 

measurements (sitting and standing). In addition, participants 

underwent non-invasive continuous haemodynamic 

monitoring using a Finometer MIDI device (Finapres 

Medical Systems BV, Amsterdam, the Netherlands) during 

an active stand test, which provided additional cardiovascular 

function parameters such as mean arterial pressure, left 

ventricular ejection time, and cardiac output. The active stand 

test has the participant laying supine for 10 minutes before 

standing up as quickly as is comfortably possible and 

remaining standing still for a further 3 minutes. Participants 

are asked if they felt dizzy on standing. Baseline 

cardiovascular values were obtained from the resting state 

time window. Cardiovascular signal complexity (sample 

entropy) for blood pressure and heart rate were also derived 

[10]. Subjects also underwent non-invasive measurement of 

pulse wave velocity (a measure of arterial stiffness). 

Computerised cognitive tests of sustained attention and 

choice reaction time were also carried out. A summary of all 

the measures considered in this analysis is shown in 

Appendix I. Further details on all these TILDA tests have 

been described elsewhere [8]. 

C. Feature selection pipeline 

We began with a total of 34 features manually selected 

from Wave 3 of TILDA (Appendix I). The features were 

chosen from multiple domains including demographics, 

cardiovascular system, cognition, psychology, hearing and 

vision, physical strength, and medications. In this analysis, 

participants with missing values for any of the above-

mentioned 34 variables were removed. The data were divided 

via an 80/20 train/test split. From there, using the training 

data, an automatic feature selection was employed that 

utilizes a stepwise approach in which features are added to a 

linear regression model one at a time such that they maximize 

the mean adjusted r-squared, 𝑅𝑎𝑑𝑗
2̅̅ ̅̅ ̅̅ ̅

, which was calculated as 

the mean 𝑅𝑎𝑑𝑗
2  value obtained from a 5-fold cross-validation 

(CV). The 5-fold CV was introduced to reduce overfitting to 

the entire dataset and help identify the features that performed 

best across multiple subsets of the data. On each iteration of 

the CV, a pipeline consisting of a standard scaler and a linear 

regression was employed. The features selected for the final 

model were those corresponding to the peak of a 𝑅𝑎𝑑𝑗
2̅̅ ̅̅ ̅̅  vs. 

added features plot.  The selected features were used to train 

a model on the training data.  The model was tested on the 

remaining 20% of the data. This process was implemented 

using the Scikit-learn package (v0.19.1) for Python (v3.8.3).  

D. Feature importance 

The importance of the selected features was assessed by 

fitting an ordinary least squares (OLS) model to the training 

data. The OLS model used was from the Statsmodels package 

(v0.13.0) for Python. The statistically significant (p<0.05) 

 
Fig. 1: automated feature selection curve. The x-axis shows the names of the features in the order they are selected for the model. All features to the left 

of a given feature are included in the model with that feature. The y-axis represents 𝑅𝑎𝑑𝑗
2 . Mean and standard deviation (SD) of 𝑅𝑎𝑑𝑗

2  values from the 5-

fold CV are shown. The green lines indicate the peak mean score and the feature at which it occurred. The red lines indicate the 95% on the peak mean 

score and the feature at which it is achieved. 

 

 
 

Fig. 1. Top ten (with age included) Frailty Index feature importance by sex. 
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features from the model, and the features that built up to 95% 

of the maximum 𝑅𝑎𝑑𝑗
2̅̅ ̅̅ ̅̅  were retained for discussion. 

III. RESULTS 

Of the 4309 participants that took part in the TILDA 

Wave 3 health assessment centre, 3925 aged 50+ completed 

both the usual and maximum walking tests required to 

generate the GSR data. Of those, 2397 (61%) were included 

in the linear regression analysis as they had no missing values 

for any of the features. Female sex made up 52.9% of the 

2397 participants.    

 
Fig. 2: Visual summary of regression coefficients for the standardized input 

features. The y-axis presents the final model features in order of descending 

coefficient magnitude from top to bottom. The x-axis shows the coefficients 
effect size with 95% confidence interval in terms of absolute GSR with units 

of cm/s.  Green markers represent statistically significant (p<0.05) effects.  

Sex is coded as male = 0 and female =1.     

Fig. 1 shows the 𝑅𝑎𝑑𝑗
2̅̅ ̅̅ ̅̅ ± 𝑆𝐷 as features are added to the 

model. The features appear on the x-axis in a cumulative 

manner, i.e. the 𝑅𝑎𝑑𝑗
2̅̅ ̅̅ ̅̅  value at a given x-coordinate 

corresponds to that of a model containing the feature at that 

coordinate plus all the other features to its left. The maximum 

𝑅𝑎𝑑𝑗
2̅̅ ̅̅ ̅̅  of 0.16 ± 0.03  was achieved in the feature selection 

with 14 features. A linear regression model containing these 

14 features returned an 𝑅𝑎𝑑𝑗
2  of 0.18 and 0.16 on the training 

and test data, respectively. However, just the first seven 

predictors built 95% of the peak 𝑅𝑎𝑑𝑗
2̅̅ ̅̅ ̅̅  score. In order of 

addition to the model, these seven features were: grip 

strength, MOCA score, third level education, chair stands 

time, sex, age, and BMI.  

 

The effect sizes with 95% confidence intervals of the 

regression coefficients from a model trained using all 14 

selected features are shown in Fig. 2.  The input features are 

standardized, and the effect size (shown along the x-axis) is 

in terms of GSR (units of cm/s). The y-axis orders the model 

features in order of decreasing coefficient magnitude from 

top to bottom. The 11 statistically significant coefficients 

(shown in green in Fig. 2) are: sex, third level education, 

MOCA, chair stands time, age, BMI, grip strength, cardiac 

output at resting state, number of medications, fear of falling, 

and mean choice reaction time. Female sex, chair stands time, 

age, BMI number of medications, fear of falling, and mean 

choice reaction time were associated with a decrease in GSR, 

whilst third level education, MOCA score, grip strength, and 

baseline cardiac output were associated with increased GSR.   

IV. DISCUSSION 

We developed a linear regression-based machine learning 

pipeline for the discovery of clinically relevant predictors of 

GSR across multiple physiological systems in TILDA. The 

first 7 of the 14 selected predictors (grip strength, MOCA 

score, third level education, chair stands time, sex, age, and 

BMI) explained 95% of the maximum 𝑅𝑎𝑑𝑗
2̅̅ ̅̅ ̅̅  achieved (0.16).  

When examining the regression coefficients, we found that 

11 variables were statistically significant: sex, third level 

education, MOCA, chair stands time, age, BMI,  grip 

strength, cardiac output at resting state, number of 

medications, fear of falling, and mean choice reaction time.  

 

The results show that there were significant associations 

between GSR and features from multiple physiological 

systems (e.g. cognitive, psychological, musculoskeletal, 

cardiovascular), which supports that GSR could be useful as 

an indicator of overall physiological reserve.  

 

Our results are consistent with previous research showing 

significant differences in maximum walking speed for 

different ages and between men and women [11, 12]. Our 

results are also consistent with previous findings that higher 

BMI and physical workload among those with lower 

education contributed most to the educational disparities in 

age-related decline in maximum gait speed [13]. Cognitive 

performance has also been cited as a significant predictor of 

maximum gait speed [14] and from our study, we can 

conclude that the MOCA may be more predictive than the 

MMSE test in this regard. Recent work has suggested that 

longer choice reaction time may be associated with 

longitudinal mobility decline [15]. Furthermore, our results 

underscore that even though maximum gait speed can be 

expected to be reduced in individuals with weaker lower 

extremity muscle strength [16, 17], upper limb strength 

assessment also needs to be considered for GSR prediction. 

Indeed, previous studies have shown that the movement 

velocity of the upper limbs is a significant determinant of 

maximum gait speed, suggesting that the ability to move any 

region rapidly might be a critical factor in maximum gait 

speed [18]. The importance of both upper and lower limb 

muscles as predictors of GSR offers clinical opportunities for 

strengthening exercises as a way to improve physiological 

reserve [19]. Fear of falling being predictive of decreased 

GSR is also clinically plausible, which offers opportunities 

for psychological interventions. Our results also suggest that 

there is clinical scope for cardiovascular health optimization 

in the context of GSR improvement.  

 

A limitation of our study is that due to the inclusion of 

participants with complete data for the 34 initial features, the 

analytical sample size was reduced to 61% of the original 

sample. In future work, this limitation could be addressed by 

exclusion of features (where clinically acceptable) with 

excessive proportion of missing data, or by performing 

multiple imputation of missing data. In addition, even though 

GSR had significant predictors in our study, the total variance 
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explained (judged by 𝑅𝑎𝑑𝑗
2 ) was low to moderate [20], 

suggesting that there is further scope for consideration of 

additional variables. Future feature discovery should attempt 

to increase the amount of variance explained with additional 

predictors and/or implementation of the study in clinical 

cohorts. However, our level of explained variance is in 

keeping with previous observations that maximum gait speed 

as a single-item tool is limited to fully predict future falls in 

community-dwelling older persons [21]. Another limitation 

to consider is that measurement of GSR restricts analysis to 

TILDA participants who attended the health assessment 

centre. Those who could not attend are likely to be frailer than 

those who did.   

 

Given the observed association between GSR and sex, a 

stratification by sex may have revealed more nuanced 

differences between the two groups. Furthermore, an analysis 

by age groups could be considered to explore whether 

associations with GSR might vary with age. In addition, in 

future work we could compare current results with those from 

non-linear and non-parametric machine learning models.  

  

According to previous research, an older persons’ 

probability of being frail with an insufficient GSR could be 

around 40% [5], which further bolsters the clinical relevance 

of the present results, since many of the identified 

associations are clinically modifiable. Indeed, improved 

education, obesity prevention, cardiovascular risk reduction, 

cognitive training, appropriate prescribing and monitoring of 

medication, neuro-psychological interventions against fear of 

falling, and muscle strengthening could all potentially 

improve GSR in older populations. GSR could also have 

safety implications during daily activities that require a 

sudden increase in pace such as crossing the road, running for 

the bus, reacting to hazards, etc., and hence be important to 

maintain older people’s functional independence. Our results 

demonstrate the importance of a network physiology 

approach for the understanding of frailty and resilience in 

ageing, where systems work together towards the generation 

of physiological reserve [22]. 
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APPENDIX 1 

Demographics 
Age Age of participant assuming date of birth is 1st of specific month 

Sex Sex of participant (male = 0, female=1) 

Behavioural health Smoker Current smoker:  yes/no 

Anthropometric BMI Body mass index: weight/height2 [kg/m2] 

Sociodemographic Edu3 

Highest education achieved: primary/none, secondary, or 
third/higher.  Encoded using one-hot encoded dummy variables with 

the ‘Secondary’ dummy variable dropped to avoid multicollinearity. 

Living 

Impairments 
IADLs Number of instrumental activities of daily living impairments 

Cognitive 

CRT mean Choice reaction time: mean time [ms] 

CRT correct Choice reaction time: number of correct choices 

MOCA 
Montreal Cognitive Assessment (scale 0-30, 30 being best 

performance) 

SART mean Sustained Attention to Reaction Time: mean time [ms] 

SART SD Sustained Attention to Reaction Time: time standard deviation [ms] 

MMSE 
Mini-mental state examination (30-point scale with 30 being best 

performance) 

 

Psychological 

HADSA 
Hospital Anxiety and Depression Scale – Anxiety (scale of 0 to 21 

with higher indicating more anxiety) 

FOF Fear of Falling: yes/no. 

Hearing and vision 

Hearing SR Self-rated hearing on a scale of 1-5 with higher being worse 

VisualAcuity 100-50*(LogMar Visual Acuity of best eye)) 

Self-reported 

medications and 
medical history 

Meds excl supps Number of medications being taken excluding supplements 

Antidepressant Taking an antidepressant: yes/no 

Antihypertensives Taking an antihypertensive: yes/no 

NumCVD Number of cardiovascular diseases 

Cardiovascular 

PulseWaveVelocity Pulse wave velocity [m/s] 

sBP Seated Seated systolic blood pressure [mmHg] 

HR Seated Seated heart rate [Hz] 

sBP SeatStandDiff 
Difference between seated and standing systolic blood pressure 

[mmHg] 

HR SeatStandDiff Difference between seated and standing heart rate [Hz] 

Cardiovascular 
(active stand) 

MAP AS Base 
Mean Arterial Pressure at baseline of active stand [mmHg]. 

Measured during resting state of active stand. 

sBP AS NadirDelta 
Drop in systolic blood pressure during active stand [mmHg] i.e. drop 

from when resting (supine) to standing. 

Lvet AS Base 
Left ventricular ejection time at baseline of active stand [ms].  

Measured during resting state of active stand. 

CO AS Base 
Cardiac output at baseline [L/min]. Measured during resting state of 

active stand. Measured during resting state of active stand. 

PhasicDizziness 
Did the participant experience phasic dizziness during the active 

stand test 

BP RS sBP 

SampEn 
Sample entropy of baseline systolic blood pressure signal 

BP RS HR SampEn Sample entropy of baseline heart rate signal 

Physical strength 
GripStrength Maximum grip strength from 8 trails (4 with each hand) [kg] 

ChairStandsTime Time taken to perform five chair stands [s] 
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