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Abstract—Accurate classification of visual objects from Single-
Trial EEG signals is a challenging task due to the low signal-
to-noise ratio (SNR) associated with the brain signals. Recently,
machine learning frameworks based on deep neural networks
have shown great potential. Network architectures have grown
increasingly complex with sophisticated modules to achieve the
state-of-the-art performance. Unfortunately, finding the optimal
network configuration is a tedious trial-and-error process. In
this work, we propose to use a wider version of the simple 1D
– CNN architecture with residual connections for EEG based
visual object recognition. Experimental results establish that this
fairly simple architecture outperforms existing techniques across
five different classification tasks. Comprehensive ablation studies
analyze the sensitivity of the model to varying parameters, espe-
cially the width of the network. We further showcase the features
extracted for different classes using t-SNE plots, and demonstrate
the superior discriminating quality of suitable network configu-
ration through representational dissimilarity analysis.

Index Terms—CNN, Wide, Residual, EEG, Representation

I. INTRODUCTION

One of the recent interests in the scientific community has
been to comprehend how different categories of objects are
conceptualized in the brain by finding their representational
similarities [1], [2]. Although earlier works have shown that
distinct responses are processed in the ventral temporal cortex
for different categories [3], it is, however, arguably difficult to
deploy such Functional Magnetic Resonance Imaging (fMRI)
based systems for day to day experimentation and applications
due to its data scarcity, stringent and prolonged acquisition
protocols and sheer per-sample data volume. In contrast, Elec-
troencephalography (EEG), being a cheap and non-invasive
method to record the brain’s electrical activities, is one of the
simplest and earliest proposed techniques for Brain-Computer
Interface (BCI), which, over the past few decades, has long
been researched for a wide range of feasible applications such
as motor imagery, emotion recognition and medical ones.

Previous work [2] brings forward the use of Principal Com-
ponent Analysis for feature extraction and Linear Discriminant
based Classification amongst the categories and examples
of different visual stimuli. One limitation of these single-
trial EEG systems is the poor signal-to-noise (SNR) ratio.
To overcome that, signal averaging and ERP is used [4].
Similar work [5] investigates the spatio-temporal dynamics
of representational similarity using three different modalities:

EEG, Magnetoencephalography (MEG) and fMRI, and employ
averaged pattern vectors for EEG and MEG, followed by linear
Support Vector Machine (SVM) to determine the decoding
accuracy between pairs of images or categories across time.
These hand-crafted features may lead to sub-par performance,
as evident from their classification accuracies.

The advent of AlexNet [6] in Computer Vision eliminated
the need for manual feature extractors, rather introduced the
end-to-end training of deep Convolutional Neural Network
(CNN), which learns local patterns from raw data at the lower
layers, later decreasing the extent of this localization at higher
layers by increasing its receptive fields, and produce superior
results. Due to the simplistic recording procedure of EEG’s,
data of a relatively larger sample size could be procured,
increasing the efficacy for these deep models if applied.

One work [7] shows the effectiveness of CNN with re-
spect to Filter Bank Common Spatial Pattern (FBCSP), a
commonly used feature extractor for motor imagery. The
proposed models split the convolution operation at the first
layer as a combination of two linear operations before passing
through an activation: the first operation performs temporal
convolution on individual input channels only, whereas, in the
second operation, the output from the first stage is convolved
over channels and features to learn spatial filter. It proposes
four architecture types: Deep, Shallow, Hybrid and very-deep
Residual (residual connections allow the training of extremely
deep models [8]), and through a comprehensive analysis shows
that Deep and Shallow networks perform on par with FBCSP,
but the performance of deep residual network suffers.

Other deep learning approaches to classify raw EEG data
use Long Short-Term Memory (LSTM), which learn intrinsic
temporal dependencies [9]. However, CNNs have been evi-
denced to outperform these models for identification of the
visual objects [10], [11]. One way to apply CNN is to convert
the multi-channel EEG signals into an image like structure
and apply deep models from computer vision, like AlexNet
[11]. These models, however, result in huge parameter space.
Current literature suggests that CNNs used for EEG based
systems, in general, are often shallower, unlike computer vi-
sion, as they perform better [7], [12]. Particularly, EEG driven
object recognition systems [10] may employ a shallow model
with few filters, increasing in number at subsequent layers,
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Fig. 1: Proposed framework of Wide, 1-D CNN with Residual Connections

along with an attentional mask for the occipital electrodes.
We, however, argue that the number of filters plays a huge
role in the model’s performance [13] and the presence of a
few filters may lead to information loss [14], and definitely
limits the performance. We also argue that introducing residual
connections for shallow networks may be beneficial, unlike
deep ones, as residuals may push forward a representation
from the lower layer and act like an ensemble [15].

To this regard, the main contributions of our work are as
follows: (1) We propose a wider version of the simple 1-D
CNN with residual connections for single-trial EEG based
visual object classification, (2) Demonstrate the superiority
of the proposed model on different classification tasks, (3)
Analyze the sensitivity of the model with ablation studies,
and lastly (4) Illustrate the importance of network width in
learning class discriminating features.

II. METHODOLOGY

A. Dataset

We used the EEG dataset [16] from [2], where 10 subjects
of different ages with normal color vision were shown pho-
tographs of 72 different stimuli from 6 different categories,
with each category encompassing 12 distinct stimuli. The
data was acquired over 2 experimental sessions for individual
subjects, with each session containing 3 blocks of 864 trials
and each stimuli being shown 12 times in random order in a
block. This paradigm resulted in 5, 184 trials per subject.

The data collected from the 128 channel EGI HydroCel
Geodesic Sensor Net [17], sampled at a frequency of 1 kHz,
was preprocessed by a high-pass fourth-order Butterworth
filter and a low-pass eighth-order Chebyshev Type I filter to
preserve frequency components of and between 1 Hz and 25
Hz only, before it was downsampled to 62.5 Hz and channels
125 − 128 were discarded. Finally, extended Infomax ICA
removed ocular artifacts before it was average referenced and
periodized into multiple trials, each of 32 time points [2].

B. Architecture

The proposed architecture is depicted in Fig. 1. The network
takes as input (X) the 124 channel (C) EEG signal with 32
time samples (T) and passes it through the 1-D Convolutional

Block (LConv) to temporally convolve, integrating all the
input channels, using filters of kernel size (K), and form
newer channels (C′), which then pass through a series of
Residual Blocks (LRes) [8] and a Classifier Block (LCls) of
3 fully-connected (FC) layers to output the final prediction
(Y). Following each 1-D Convolution (Conv) layer, Batch
Normalization (BatchNorm) layer [18] is added to help with
training. For intermediate FC layers, fc1 and fc2 with output
sizes of 500 and 100, respectively, Dropout [19] with drop
probability of 0.5 has been incorporated for regularization.

For the standard baseline, we set lres= 2 and C′= 512.
Exponential Linear Unit (ELU), being the suitable choice [7],
was set as activation for LConv, L1

Res and L2
Res, whereas,

for fc1 and fc2, Rectified Linear Unit (ReLU) was used. The
preprocessed data was already downsampled by a factor of 16,
so we excluded the use of pooling from the baseline.

III. EXPERIMENTAL PROTOCOLS AND ANALYSIS

A. Training and Evaluation Procedure

We trained the models by minimizing the Cross-Entropy
Loss using Adam optimizer [21] with weight decay regular-
ization. We conducted evaluations for within-subject object
classification using repeated 10-fold stratified cross validation.
This strategy splits the data for each subject into 10 folds,
while ensuring uniform distribution of per-class samples across
folds. For precise evaluation, the cross-validation procedure is
repeated thrice with varying splits. We report the mean accu-
racy and the corresponding standard deviation obtained from
the accuracies of all the subjects. For different classification
tasks, we determined the different weight decays and number
of training epochs based on the repeated cross validation
accuracy. As for the individual variants of the architecture,
we fine-tuned the weight decays pertaining to each task.

B. Classification Results

We evaluated the performance of our proposed architecture
for 5 different classification tasks, as in [2]: 6 class category, 72
class exemplar, Human Face (HF) vs Inanimate Object (IO)
category, HF exemplar and IO exemplar. Table I compares
the classification performance of our 1-D Wide-Res CNN to
existing methods. Though a fairly simple architecture, the
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TABLE I: Comparison of classification performance using different approaches across different tasks

Method Classification Accuracy (%)
HF vs IO HF Exemplar IO Exemplar 6 Category 72 Exemplar

LDA [2] 81.06± 3.66 18.30± 5.63 28.87± 10.57 40.68± 5.54 14.46± 6.43
ICA-ERP [20] — — — 43.50 —
Shallow [10] — — — 49.04± 6.99 23.72± 10.95

LSTM [10], [11] 80.67 — — 44.77± 6.30 15.39± 6.01
LSTM + CNN [10] — — — 46.18± 6.79 23.23± 10.48

CNN [10], [11] 83.10 — — 50.00± 6.61 25.93± 10.67
Attention CNN [10] — — — 50.37± 6.56 26.75± 10.38

CNN-ResNet101 [11] 85.50 — — — —
1-D Wide-Res CNN (our) 88.83± 3.49 24.64± 7.90 47.12± 16.26 51.29± 7.57 28.68± 12.58
— represents values not reported in their respective paper.

proposed method outperforms all other reported methods,
attributing the performance boost to the network’s width and
residuals. To get a better understanding of the latent-space
representation of different categories learned by the model,
we extracted the fc2 outputs for individual validation folds and
visualized them using t-SNE plots [22]. As depicted in Fig. 2,
the t-SNE showcases similarities of samples while preserving
both the local and global structures from the extracted features.

C. Ablation Studies
We performed comprehensive ablation studies to investigate

the sensitivity of our proposed model to the network configu-
rations as shown in Table II.

In general, the classification performance has a positive cor-
relation with the increasing width till a certain threshold, after
which it either saturates or deteriorates. The results suggest
that, ideally, the number of filters used in the 1-D convolutional
layers should be more than the number of input channels
for learning reasonably good discriminating representations.
It could further be inferred that the lower number of filters
may have barred previous networks from realising their full
potential [7], [10]. Interestingly, the influence of the width is
striking for tasks with a significantly higher sample size - 6
class category and 72 class exemplar classifications. This is
indicative of the optimal width being driven by the sample
size, as established by [23].

In comparison to the width, the influence of depth appears
to be more complex. While experimental results concur with
previous studies that shallow networks outperform their deeper
counterparts, determining the optimal depth still remains in-
tricate. Results suggest that networks of one or two Residual
Blocks perform better for a majority of tasks, while deeper
ones may critically divest the performance. Furthermore, the
effect of introducing Residual Blocks is strikingly visible for
deeper networks of 5 Conv Layers, compared to 3 Conv Layers
networks.

Ablation results indicate that kernel size is another impor-
tant factor. Introduction of kernels of size 5 led to improved
performance in three of the tasks. Additionally, although most
deep architectures employ pooling, which not only reduces
the computational complexity but also increases the receptive
fields at higher layers, our results, in contrast, exhibit a statis-
tically significant drop in accuracy for a majority of the tasks.

(a) 6 Category (Perplexity: 30) (b) IO Exemplars (Perplexity: 6)

Fig. 2: Sample t-SNE plots generated for different classifica-
tion tasks for Subject 6. While the inherent structure of the data
is depicted in both, the intra-class similarity is distinguishable
for 6 category classification but not so evident for IO exemplar
classification.

This drop may be attributed to the inherently low sampling
resolution of the preprocessed dataset. It can be inferred that
pooling should be not universally exercised but introduced
judiciously based on the characteristics of the dataset.

D. Representational Analysis

For a deeper understanding of the influence of network’s
width, we compared the individual Conv layers’ extent in
discriminating the classes for networks with varying width. We
incorporated the correlation distance based Representational
Dissimilarity Matrices (RDM) [1] for all sample pairs per
individual folds. The correlation distance is measured as 1−ρ,
where ρ is the Pearson’s Correlation Coefficient (PCC). The
RDM values range from 0 to 2, with 2 being the most
dissimilar. The self-similarity must be 0, and is thus discarded.
But the input signals for any distinct visual stimulus varies to
some extent for different trials. Considering this variability
for every within class sample pairs, it is the network’s task
to learn the underlying dissimilarities amongst the samples
of different classes. Thus, the features learned by the Conv
layers’ filters, in learning these dissimilarities, should directly
impact the performance.

To evaluate the discriminative capacity of each layer, we
first calculated the pair-wise correlation distances for both
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TABLE II: Ablation study analyzing the effect of varying network parameters

Variant Architecture Type Parameters Classification Accuracy (%)
(Approx.) HF vs IO HF Exemplar IO Exemplar 6 Category 72 Exemplar

Standard Baseline 11.59M 88.83± 3.49 24.64± 7.90 47.12± 16.26 51.29± 7.57 28.68± 12.58
Variation in 64 Channels 1.15M 88.71± 3.52 20.32± 5.69a 38.45± 13.00a 46.44± 8.43a 21.75± 10.50a

Channel 128 Channels 2.35M 88.84± 3.64 23.10± 6.93b 44.46± 14.99a 49.53± 7.52a 22.06± 11.01a

256 Channels 5.03M 88.95± 3.60 24.01± 7.91 45.65± 15.62a 49.84± 7.32a 25.21± 12.59a

768 Channels 19.71M 88.80± 3.57 24.48± 7.15 47.12± 16.33 51.91± 7.63a 29.93± 12.47a

1028Channels 29.42M 88.72± 3.55 24.67± 7.64 46.91± 16.20 51.80± 7.51 29.76± 12.56b

Variation in 0 Residual Layer 8.44M 86.73± 4.46a 22.96± 6.25 41.82± 13.48a 52.08± 7.56 19.85± 9.72a

Depth 1 Residual Layer 10.01M 89.21± 3.64a 24.47± 7.46 46.72± 16.21 52.08± 7.67a 26.23± 13.08a

3 Residual Layers 13.16M 88.73± 3.75 24.65± 7.75 46.62± 15.90 51.04± 7.21 27.99± 12.09b

4 Residual Layers 14.74M 88.50± 3.85 24.07± 7.30 46.15± 16.18 50.72± 7.07b 26.80± 11.60a

Absence of 3 Conv Layers 10.01M 88.82± 3.62 24.64± 7.22 47.05± 16.32 50.74± 7.45 22.18± 11.49a

Residuals 5 Conv Layers 11.59M 87.58± 3.82a 23.27± 6.70 42.69± 14.76a 48.31± 7.18a 26.55± 11.65a

Pooling Avg Pool Twice 5.44M 88.92± 3.59 22.22± 7.08a 42.90± 15.69a 50.06± 7.37a 25.00± 11.78a

Techniques Max Pool Twice 5.44M 89.00± 3.62 22.20± 6.58b 41.76± 14.39a 47.43± 7.07a 19.90± 8.63a

Variation in Kernel Size 5 13.81M 89.54± 3.39a 25.25± 8.04 47.42± 16.51 50.99± 7.55 28.44± 12.18
Kernel Size Kernel Size 7 16.04M 89.46± 3.49a 24.55± 7.76 46.66± 16.17 50.65± 7.53b 28.00± 12.02b

Kernel Size 3 and 5 12.70M 89.51± 3.33a 25.36± 7.88b 47.31± 16.25 51.26± 7.69 28.80± 12.37
Kernel Size 5 and 7 14.92M 89.44± 3.53b 24.75± 7.77 47.17± 15.91 50.90± 7.60 28.40± 12.14

‘Parameters’: respect to 12 output classes. ‘Statistical Significance’ compared to the Baseline: ap-Value ≤ 0 .01 , bp-Value ≤ 0 .05 .

the intra and inter class sample pairs for all the validation
folds. The hidden representation at each layer for each sample
is obtained by reshaping all per-channel output vectors to a
single output vector. This vector is standardized and converted
to unit-variable [24]. PCC of unit-variable pair of samples
allows for the correlation distance to be expressed as Euclidean
distance, as:

dij =
√
2
√
1− ρij , (1)

where, d is the Euclidean Distance, ρ is the PCC, and i and
j are sample pair from same or different classes.

We hypothesize that the representational dissimilarity
among the intra and inter class sample pairs’ should provide
us with some insights into the degree of separability at indi-
vidual layers for networks of varying width. To this end, we
incorporated the transformation from (1) to the dissimilarities
and calculated this separability in terms of the Fisher Score
[25]. This representational separability for the intra and inter
pair groups is, thus, written as follows:

rd =
pinter(µinter − µb)

2
+ pintra(µintra − µb)

2

pinterσ2
inter + pintraσ2

intra

, (2)

where, rd is the measure of representational separability, and
µinter , µintra, σ2

inter, σ2
intra are the means and variances

of the dissimilarity measures (in terms of Euclidean distance)
for all possible inter and intra class pairs, respectively, and
the pinter and pintra are the respective fractions of inter and
intra class dissimilarities from the total number of possible
dissimilarities, and µb is the overall mean, calculated as
pinterµinter + pintraµintra.

We measured rd for individual layers of LConv, L1
Res and

L2
Res, for networks of different widths. Two of these are

depicted in Fig. 3. The separability is increasing at the higher
layers, and for four of the cases, it was observed that the
high separabilities at higher layers correlate well with the best
performances (induced by the network’s width). These results

emphasize the implicit effect of the network’s width on class
discrimination capability.

IV. DISCUSSION

Single-trial EEG based visual object detection is a difficult
task. Even with the state-of-the-art methods, the performance
is still far from an acceptable threshold. The high noise
associated with individual EEG signals affects the network’s
performance significantly. At times, methods such as averaging
multiple trials of signals are used [4], which may improve the
classification by a large extent. But the comparison of such a
method’s performance to single-trial models would not be fair.
For single-trial approaches, deep neural networks can more
effectively discriminate the noisy data than traditional machine
learning techniques. However, due to many parameters, the
performance of deep learning architectures varies significantly
for each configuration. This makes determining the optimal
set of parameters a laborious and time-consuming task. Addi-
tionally, variability in the performance observed for individual
tasks, specifically for the width and depth parameters, makes
us concur that the data sample size and the number of classes
play a crucial role in determining proper parameter choices.

A limitation of this work is that it focuses on a single
dataset. While our ablation studies have been comprehensive,
the observed trends might not necessarily generalize to other
datasets. One obvious instance would be the behaviour of
pooling operation. To better understand the intricacies of
such operations, future studies could be conducted on EEG
data acquired at different resolutions. To observe meaningful
and generalized trends, experiments need to be conducted on
several datasets that differ in sample size, number of classes,
temporal and spatial resolution under a range of experimental
setting. While such into the wild datasets may be available for
computer vision, but, to the best of our knowledge, not for
EEG currently.
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(a) HF vs IO Classification

(b) HF Exemplar Classification

Fig. 3: Plots for layer-wise representational separabilities (rd),
for LConv, L1

Res and L2
Res. The thick line corresponds to the

network with the maximum accuracy. The plots are in log-
scale to ensure better visibility. The low separability in the HF
Exemplar Classification is apparent by its decoding accuracy.

V. CONCLUSION

In this work, we demonstrate the superior performance of
a simple Wide-Residual 1-D CNN for single-trial EEG signal
based visual object classification task in comparison to existing
methods. Through in-depth ablation studies, we analyzed the
effect of varying network parameters such as width, depth,
residual connections, kernel sizes and pooling techniques for
our proposed architecture. These studies revealed a distinct
relation between the width and the performance of the net-
work. These experiments concluded that an adequate width is
necessary for a network to realize its full potential, and its
parameters depend on the size of the training data and the
number of classes. We further corroborate these observations
by the latent-space representational separability achieved by
the different network layers with varying width.
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