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Abstract—To estimate the heart rate (HR) from electrocardio-
gram (ECG), time-frequency representations such as the short-
time Fourier transform (STFT) is often used. As the STFT
is constrained by the choice of a specific analysis window
used for its definition, we alternatively propose to estimate
HR from a synchrosqueezed STFT. More precisely, we build a
novel algorithm inspired by non-negative matrix factorization to
estimate HR by determining the minimal Wasserstein distance
between a synchrosqueezed STFT and columns of a specific
dictionary matrix. Throughout numerical simulations carried out
on both synthetic and real ECGs, we show in what way to
use a synchrosqueezed STFT rather than STFT improves HR
estimation.

Index Terms—HR estimation, non-negative matrix factoriza-
tion, Wasserstein distance, synchrosqueezing transform.

I. INTRODUCTION

HR estimation from electrocardiogram (ECG) recordings
has been a very active research topic in the past decades, and
can be either signal-based, as for instance in techniques using
R-peak detection [1], [2], or time-frequency (TF) based [3], [4].
TF analysis has been used on ECG signals in many different
circumstances as for instance to detect abnormal behaviors like
sleep apnea [5], to study arrhythmia [6], to identify coronary
artery deseases [7] or to separate fetal ECG from that of the
mother [8]. Regarding this last application, there exist many
other alternative techniques to extract fetal ECG among which
one may cite blind source separation [9], [10], blind adaptive
filtering [11], Kalman filter [12], to name but a few.

In the present paper, the focus is put on TF-based HR
estimation and, more precisely, we investigate the STFT of
ECGs. In that context, the basic principle ruling HR estimation
is that an ECG corresponds at each time instant to the sum
of several harmonics whose frequencies are multiples of the
so-called fundamental frequency (FF) which is the sought HR.
For its estimation, we first propose to compare STFT at each
time instant with the columns of a dictionary matrix, being
aware that such an approach will necessarily be constrained
by the choice of the window used in STFT definition. To
cope with this issue, we carry out the same approach but
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using the reassigned STFT named synchrosqueezing transform
(FSST) instead of STFT. The rationale to consider such a
time-frequency representation (TFR) is that we believe the
reassignment process, by sharpening the TFR it is based on,
should lead to a more accurate HR estimation. Note that the
synchrosqueezing transform was first introduced to reassign
the continuous wavelet transform [13] and then extended to
STFT reassignment in [14], [15] . As FSST reassigns exactly
only signals made of pure harmonics, an extension of FSST
was introduced to deal with more frequency modulated signals
[16], called FSST2. In this regard, we will therefore investigate
whether to use FSST2 instead of FSST also brings some
improvements in terms of HR estimation.

The paper is organized as follows: in Section II, we recall
some basic definitions on STFT, synchrosqueezing transforms,
and non-negative matrix factorization (NMF) and then detail
our novel algorithm, inspired by NMF, that uses either STFT
or its reassigned versions to perform HR estimation, in Section
III. Numerical results on both simulated and real ECG signals
conclude the paper.

II. DEFINITIONS

A. Time frequency Analysis

Considering a signal f ∈ L1(R)∩L2(R) and a real window
g ∈ L∞(R) ∩ L2(R), its STFT is defined as:

V gf (t, η) =

∫
R
f(τ)g(τ − t)e−2iπ(τ−t)ηdτ. (1)

In this paper, we assume ECG is modeled by a specific kind
of multicomponent signals (MCSs):

f(t) =

P∑
p=1

Ap(t)e
2iπpφ′(t), (2)

where φ′ is the fundamental frequency (FF) and Ap the
instantaneous amplitude (IA).

B. Synchrosqueezing Transforms

While STFT is very commonly used to analyze signals of
type (2), it is constrained by the Heisenberg uncertainty prin-
ciple that stipulates that STFT cannot be perfectly localized
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in time and frequency at the same time. Therefore, the choice
of the analysis window g is central in that context.

To improve the TF localization of STFT, different reassign-
ment techniques were introduced among which FSST [14],
[15] is one of the most popular. In a nutshell, using the local
instantaneous frequency estimator given by a reassignment
operator

ω̂(t, η) = <{ω̃(t, η)} with ω̃(t, η) = η − 1

2iπ

V g
′

f (t, η)

V gf (t, η)
,

where <{X} is the real part of complex number X . FSST re-
assigns STFT coefficients with modulus larger than a threshold
λ through:

Tλf (t, ω) =

∫
|V gf (t,η)|>λ

V gf (t, η)δ(ω − ω̂(t, η))dη. (3)

A discrete time and frequency version of the synchrosqueezing
transform given by (3) can then be derived, corresponding to
a K ×N matrix, N being the length of the signal and K the
number of frequency bins.

Since FSST is unable to properly reassign MCSs contain-
ing frequency modulated modes, an extension was proposed
to deal with this issue through the so-called second order
synchrosqueezing transform (FSST2) [14], [16]. The latter
is defined by means of the second order local complex IF
estimate of f [16]:

ω̃(2)(t, η) =

{
ω̃(t, η) + q̃(t, η)(t− t̃(t, η)) if ∂tt̃(t, η) 6= 0
ω̃(t, η) otherwise,

in which: t̃(t, η) = t +
V tgf (t,η)

V gf (t,η)
, and q̃(t, η) =

1
2iπ

V g
′′

f (t,η)V gf (t,η)−(V g
′

f (t,η))2

V tgf (t,η)V g
′

f (t,η)−V tg
′

f (t,η)V gf (t,η)
. Finally, ω̂(2)(t, η) =

<{ω̃(2)(t, η)} corresponds to the desired local IF estimate.
FSST2 is then defined by replacing ω̂ by ω̂(2) in (3). In the
same way as for FSST, a discrete time and frequency version
of FSST2 can be derived.

C. NMF Basics

Non-negative matrix factorization (NMF) decomposes a
given non-negative data matrix X ∈ RK×N into two non-
negative matrices, the dictionary matrix W ∈ RK×Ke and
the activation matrix H ∈ RKe×N such that X ≈ WH,
Ke being the number of components in the dictionary. The
decomposition is based on minimizing the reconstruction error
of X through WH, which can be formulated as [17]

min
W,H

D(X|WH) subject to W ≥ 0,H ≥ 0. (4)

The most popular cost functions D are the Euclidean distance,
Kullback-Leibler (KL) divergence and Itakura-Saito (IS) dis-
tance. To solve the problem defined in (4), a maximization-
minimization algorithm based on multiplicative updates [17]
is widely used [18].
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Fig. 1. (a): STFT of an ECG generated following [19]; (b): FSST2 of the
same ECG; (c): Dictionary matrix W1 used with STFT-based approach; (d):
Dictionary matrix W0 used with FSST2-based approach. For the sake of
legibility, in (c) and (d) we do not normalize the column of the matrices.

D. Definition of the Dictionary Matrices

In the context of ECG signals analysis, we consider a fixed
dictionary W, in which each column corresponds to a specific
fondamental frequency (FF). In the following study, we will
consider that X is either STFT (see an illustration in Fig.
1 (a)), FSST or FSST2 moduli (see an illustration in Fig. 1
(b) for FSST2). Taking into account that, for resting patients,
FF may vary between 30 and 180 beats per minute (bpms),
when X is either FSST or FSST2 moduli, we consider the
dictionary matrix given in Fig. 1 (d), which we denote by
W0. This matrix consists of Ke columns corresponding to
151 components each of which corresponds to an integer FF
between 30 and 180 bpms. The coefficients in each column
are set to one when they correspond to multiples of FF, and
zero elsewhere. With such a dictionary matrix, only some of
the harmonics are taken into account, since fewer harmonics
are present in W0 when FF increases. Furthermore, the fact
that the different harmonics have different amplitude is not
considered. We will see that these aspects do not much alter
HR estimation performance with the algorithm we propose.

When X corresponds to STFT modulus, one has to take
into account the width of the analysis window in the definition
of the dictionary matrix. For the sake of simplicity, we here
consider a Gaussian window of the form e−π

x2

σ2 . In the Fourier
domain, it corresponds to e−πσ

2η2 . So, to build the dictionary
in the STFT case, we consider a simple convolution of each
column of W0 with e−πσ

2η2 . This results in the dictionary
matrix denoted by W1 (see Fig. 1 (c)).
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III. NMF-LIKE DECOMPOSITION BASED ON FSST
MAGNITUDE

A. Computation of Activation Matrix Using Wasserstein Dis-
tance

With a fixed dictionary matrix, the computation of H when
D is the Euclidian distance boils down to a simple least-square
minimization problem:

H = argmin
H0

‖X−WH0‖2,

and thus H satisfies WTWH = WTX, and is not necessarily
unique. Alternatively, we impose that H be associated with
only one function in the dictionary, and we compute H by min-
imizing, at each time instant, a specific earth mover distance
(EMD) [20]. Let us recalll that EMD is a sliced Wasserstein
distance that aims at comparing probability distributions, and
that it has already been used in the TF context for instance in
[16], [21]–[23].

We propose to compute the sliced Wasserstein distance d
between X at time n, corresponding to the column Xn of X
(normalized by its sum so that it can be viewed as a probability
distribution) and each column of the matrix W, the ith column
of W being denoted by Wi (normalized by its sum), and then
define

i0 = argmin
i

d(Wi,Xn). (5)

Finally, Hn, the nth column of H, is such that Hi,n = 0 if
i 6= i0, and Hi0,n = 1.

B. Algorithm for HR Computation

The approach we propose for HR estimation is based on
minimal Wasserstein and consists of several steps.

First, one defines a probability of false HR detection on a
test signal. To do so, we first estimate the mean HR iM by the
median of the component indices associated with the minimal
Wasserstein distance over the whole test signal duration. Let
us denote by îM this estimate. To measure good detections,
we consider the interval Î = [ 3îM

4 , 3îM
2 ], and then define B̂ as

follows:

B̂ =

#{n, argmin
i

d(Wi,Xn) ∈ Î}

N
. (6)

The rationale supporting the definition of Î is that the largest
sub-harmonic is located at îM

2 and the smallest harmonic at
2̂iM , and thus Î corresponds to the half intervals between these
and FF. The probability of false detection is then defined as
Pf = 1− B̂.

Assuming Pf is known, the first step of the proposed HR
estimation for a given ECG signal consists of computing nmed
an estimate of the minimal time index such that the probability
that the median of the detection computed from time indices 1
to nmed is exact with probability p0. Assuming the locations

of false detections are randomly distributed, nmed can be
computed using the binomial law as follows:

nmed = argmin
n

(

n/2∑
k=0

CknP
k
f (1− Pf )n−k ≤ p0). (7)

Knowing nmed, we compute HR estimates for time indices
between 1 and nmed, following the scheme described in
Algorithm 1. To check a posteriori the validity of the computed
nmed, we compute the median of the detection between time
indices 1 and nmed, and then recompute an estimate of B̂ from
this set using the same approach as before. If B̂ is lesser than
1 − βPf (β is fixed to 3/4 here) nmed is increased until B̂
becomes larger than 1− βPf . Having defined HR estimation
for the first nmed time indices, the estimation carries on
following the approach described in Algorithm 2, in which
γ is some parameter whose influence will be discussed in the
Results section.

Algorithm 1: HR estimation step 1
Input : W,X, nmed
for n = 1, · · · , nmed do

ĩ[n] = argmin
i∈[1,Ke]

d(Wi,Xn)

end
iM = median

{̃
i[n], n = 1, · · · , nmed

}
for n = 1, · · · , nmed do

î[n] = argmin
i∈[ 34 iM ,

3
2 iM ]

d(Wi,Xn)

end

Algorithm 2: HR estimation step 2

Input : W,X, nmed, î[1, · · · , nmed], γ
for n = nmed + 1, · · · , L do

∆n = std
{̂
i[k], k = 1, · · · , n− 1

}
î[n] = argmin

[̂ı−γ∆n ,̂ı+γ∆n]

d(Wi,Xn)

end

It is worth noting here that to improve the computational
efficiency of the proposed algorithm we compute only the
Wasserstein distance on a small number of elements of the
dictionary.

IV. RESULTS

In this section, we first investigate false detections depend-
ing on the TFR used to compute B̂, then we explain how to
fix the parameter γ in Algorithm 2 by studying the behavior of
this algorithm on synthetic ECG generated by the MATLAB
function ”ecgsyn” developed in [19]. Finally, we conclude by
showing some results on real ECGs extracted from the SiSEC
database [24].
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Fig. 2. (a): modulus of STFT, the white curve corresponds to the indices associated with the minimal Wasserstein distance (B̂ = 39.61%); (b):same as (a)
but for FSST (B̂ = 94.34%) (c):same as (a) but for FSST2 (B̂ = 75.4%).

HR Mean B̂ STFT B̂ FSST B̂ FSST2

60 bpm 39.61% 94.34% 75.4%

70 bpm 81.18% 99.14% 90.04%

80 bpm 100% 100% 100%

TABLE I
COMPUTATION OF B̂ ON SYNTETHIC ECG SIGNALS WITH DIFFERENT HR
MEANS WHEN EITHER STFT, FSST OR FSST2 ARE USED TO COMPUTE X

A. Determination of the Probability of False Detection

To compare the different probability of false detection
depending on the type of TFR used to define X, we consider
synthetic ECGs generated as in [19], compute the correspond-
ing STFT, FSST, and FSST2 and then (5) for each time instant
when X is associated with one of the just mentioned TFRs.
With these synthetic signals, the mean HR component iM
is known, and we measure good detection by considering
I = [ 3iM

4 , 3iM
2 ] and then

B =

#{n, argmin
i

d(Wi,Xn) ∈ I}

N
, (8)

the probability of false detection being 1− B. We numerical
notice that, with STFT or FSST2 the minimum of the Wasser-
stein distance is much more likely to be associated with a sub-
harmonic than when FSST is used, resulting in a much higher
probability of false detection, and this is true whatever the
mean HR ( the results are depicted in Table. I). An illustration
of this is given in Fig. 2 (a)-(c) when the TFR are either STFT,
FSST and FSST2, respectively: the white curves correspond to
the indices associated with the minimal Wasserstein distance
for each time index n. We notice that false detections usually
occur when HR changes rapidly, and, as the signal is quasi-
harmonic, to make a linear chirp approximation on the modes,
as is done in FFST2, results in error at these time indices. As
our plan is to use Wasserstein distance for HR computation,
we will make use of FSST rather than STFT or FSST2.

B. Determination of γ on Synthetic ECG

The goal of this section is to define an appropriate choice
for parameter γ used in Algorithm 2. For that purpose, we
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Fig. 3. (a): Estimation of HR mean from î. (b): Estimation of the correspond-
ing standard deviation.

investigate how good this algorithm is to estimate the mean
and standard deviation of HR, which are input parameters
of the function ”ecgsyn”. In what follows, we denote by
HRsynthe mean heart rate and by σsyn its standard deviation.
To make HR estimation realistic we consider HRsyn = 60
bpms (corresponding to component index 31) and σsyn = 2
bpms. Such a signal enables a clear separation between har-
monics and enough variability of HR, so that its study is useful
for the analysis of real ECGs that comes next. For that type
of signals, we compute the mean of î along with its standard
deviation, expressed in terms of a number of components, both
as a function of γ. The results depicted in Fig. 3 (a) and
(b) show that the proposed algorithm enables very accurate
estimations of both the mean and standard deviation of HR
provided γ is taken around 2.5. Note that the range for γ to
retrieve the mean and standard deviation of HR is very similar
when either FSST or FSST2 is considered.

C. Study of Real ECGs

We here study ECGs extracted from SiSEC database [24],
which correspond to thoracic recordings, which can be con-
taminated by different types of noises, and in particular
impulse noises. EMD based on FSST computed on such a
signal, and γ fixed as explained in Section IV-B, is depicted in
Figure 4 (a). The presence of impulsive noises tends to create
some local minima of the Wasserstein distance at frequencies
corresponding to the largest sub-harmonic of the true FF.
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Fig. 4. (a) FSST based EMD of a real ECG signal. (b) HR detection on the
same signal using γ = 3.

As FSST somehow reduces the noise while enhances the
significant harmonics, the proposed HR estimation algorithm
never gets trapped by minima that arise at sub-harmonic
locations. We display in Fig. 4 (b) î (white line) along with
the TF region corresponding to standard deviation ∆n, when
n varies.

V. CONCLUSION

In this paper, we have introduced a novel procedure for
HR estimation from the reassigned time-frequency represen-
tation of ECG recordings. The proposed approach has been
developed on the time-frequency representation associated
with the synchrosqueezing transform of the short-time Fourier
transform. The simulations carried out on synthetic ECGs help
us finding the most appropriate TFR for HR estimation and
the right parameters values. An application to real ECG signals
was then proposed, for which promising results were derived.
In a near future, we plan to extend this approach to more
complex situations principally the monitoring of fetal activity,
to study more in detail the impact of noise on the proposed
HR estimate, and also to investigate how to use the proposed
algorithm for abnormal behavior detection like arrythmia or
sleep apnea.
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[17] Cédric Févotte and Jérôme Idier, “Algorithms for nonnegative matrix
factorization with the β-divergence,” Neural computation, vol. 23, no.
9, pp. 2421–2456, 2011.

[18] V. Leplat, N. Gillis, and A. M. S. Ang, “Blind audio source separation
with minimum-volume beta-divergence NMF,” IEEE Transactions on
Signal Processing, vol. 68, pp. 3400–3410, 2020.

[19] Patrick E McSharry, Gari D Clifford, Lionel Tarassenko, and Leonard A
Smith, “A dynamical model for generating synthetic electrocardiogram
signals,” IEEE transactions on biomedical engineering, vol. 50, no. 3,
pp. 289–294, 2003.

[20] S. Peleg and M. Werman, “Fast and robust earth mover’s distances,” in
IEEE Int. Conf. Computer. Vision., 2009, pp. 460–467.

[21] Ingrid Daubechies, Yi (Grace) Wang, and Hau-Tieng Wu, “Conceft:
concentration of frequency and time via a multitapered synchrosqueezed
transform,” Philosophical Transactions of the Royal Society A: Math-
ematical, Physical and Engineering Sciences, vol. 374, no. 2065, Mar
2016.

[22] Haizhao Yang, “Statistical analysis of synchrosqueezed transforms,”
Applied and Computational Harmonic Analysis, vol. 45, no. 3, pp. 526–
550, 2018.

[23] Duong Hong Pham and Sylvain Meignen, “High-order synchrosqueezing
transform for multicomponent signals analysis-with an application to
gravitational-wave signal.,” IEEE Trans. Signal Processing, vol. 65, no.
12, pp. 3168–3178, 2017.

[24] Antoine Liutkus, Fabian-Robert Stöter, Zafar Rafii, Daichi Kitamura,
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