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Abstract—The electrocardiogram (ECG) is a reliable tool for
monitoring cardiac conditions non-invasively. Its use is nowa-
days widespread and extends beyond purely medical purposes.
Nevertheless, its application in residential settings comes with
drawbacks. Non-stationary noise caused by motion reduces the
signal’s quality and alters the signal’s characteristics. In this
paper, we employ canonical polyadic decomposition (CPD) along
with the measurements of a 3D accelerometer to characterize
and remove artifacts. A CPD decomposes a noisy ECG into its
constituting elements by examining multi-dimensional correla-
tions. Its success, however, depends on how well the constituting
elements are estimated to configure the model. The purpose of
this paper is to achieve this task. We recorded data from ten
healthy subjects undertaking different movement types: Standing
up, bending forward, walking, running, jumping, and climbing
stairs. In addition, we recorded isolated motion artifacts from
the back of the subjects and mixed them with the ECG signals.
To quantify the performance of the decomposition process, we
compared the difference in the signal-to-noise ratio (SNR) and
the root mean squared error (RMSE) between the actual and
the estimated ECG. The proposed CPD model outperforms the
adaptive filter and the wavelet denoising in terms of the SNR.

Index Terms—inertial sensor, motion artifact, tensor decom-
position, unsupervised machine learning, wireless electrocardio-
gram

I. INTRODUCTION

Cardiovascular diseases (CVDs) remain the leading cause
of death with a share of 31 % in all global deaths [1]. Early
detection is vital to start the appropriate treatment at early
onset and minimize the risk of a fatal outcome. Therefore,
the electrocardiogram (ECG) is the most commonly applied
method. Its application is straightforward, non-invasive, and the
information derived is highly diagnostic. Recently, many mobile
monitoring devices have been developed that include, among
others, ECG sensors to record cardiovascular. By employing
these devices in residential settings, they reduce the need for
constant supervision by medical experts and decrease healthcare
costs. [2], [3] The continuous technical development has led to
increased comfort and more comfortable use in everyday life.

However, the added freedom of movement has also led
to many limitations and drawbacks. The subjects’ movement
causes significant artifacts, which hinder the automated eval-
uation of the data. These motion artifacts can mimic severe
pathological conditions of the heart [4], and they can lead
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to significant misinterpretation of underlying conditions [5].
Therefore, they need to be removed from the data before it is
evaluated.

Unfortunately, motion artifacts and cardiac information in
the ECG inherit significant overlap in their spectral characteris-
tics [6]. Therefore, traditional linear frequency filtering fails to
separate them. Previously, various methods have been proposed
to remove motion artifacts from the ECG: The adaptive filter
(AF) uses a reference signal (e.g., an accelerometer) that
is correlated to the motion artifacts to estimate the noise
present in the ECG [7], [8]. Independent component analysis
(ICA) is a matrix decomposition method that factorizes multi-
channel ECG based on the assumption that artifacts and cardiac
information are statistically independent [9]. Wavelet transform
(WT) transforms the ECG from the time into the time-frequency
space and eliminates motion artifacts by a) removing cardiac
information and considering the residuals as artifacts [10] or
b) removing the motion artifacts by employing multi-level
thresholding with thresholds specifically modified to remove
motion artifacts directly [11].

In the following, we propose a method based on tensor
decomposition to remove motion artifacts. Furthermore, we
demonstrate how to estimate the required tensor rank us-
ing statistical parameters and remove the artifacts using an
accelerometer as a motion reference. This paper extends a
previous publication [12], in which we demonstrated the ability
of tensor decomposition to remove motion artifacts from ECG
with for a selected signal-to-noise ratio (SNR) using a fixed
decomposition rank. Accordingly, in the following, we present
an approach that can predict the rank of the decomposition
and show that the removal of artifacts with tensor is applicable
to different noise levels.

We organize the paper as follows: In section II, we give
a brief introduction to tensor decomposition. In section III,
we describe our approach to remove artifacts, including the
experimental setup, and discuss the results in section IV.

II. TENSOR DECOMPOSITION

Matrix factorization belongs to the family of unsupervised
machine learning algorithms. This technique is employed to
extract underlying information from data by decomposing a
matrix into latent factors. Figure 1 illustrates the principle of
matrix factorization for the singular value decomposition (SVD).
The matrix X is decomposed into an outer product of the left
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and right singular vectors ur and vr, scaled by the respective
singular value σr. SVD factorizes a matrix into R components
by assuming that these components are orthogonal to each
other. In order to remove motion artifacts, artifacts and cardiac
information would thus have to be orthogonal. Similarly to
SVD, other matrix decompositions impose different constraints,
e.g., independence or non-negativity, to factorize the data.

Figure 1. The principle of SVD [12].

Therefore, matrix decompositions heavily rely on enforcing
artificial constraints on the factors (independence, orthogo-
nality). Furthermore, the number of components that can be
extracted is limited to the number of input channels used in
the decomposition process (i.e., a two-channel ECG yields no
more than two components extracted).

In contrast to matrix decomposition, tensor decomposition
is applied to N-dimensional data, where N ≥ 3. It utilizes the
multi-dimensional correlation existing in the data to extract
latent information instead of imposing additional constraints.
In contrast to matrix decomposition, the number of sources
extracted is not limited by the original data.

One of the most frequently employed tensor decomposition
models is canonical polyadic decomposition (CPD). CPD is
a rank-based factorization method that decomposes a tensor
X into a linear combination of rank-one tensors (also referred
to as pure tensor). For a three-dimensional tensor, the CPD
model is defined as:

X ≈
R∑

r=1

ar ◦ br ◦ cr (1)

where ◦ is the outer product, R is the rank of the model,
quantifying the latent features extracted, and ai,bi, ci are the
three loading vectors, each representing one dimension of the
initial tensor X . Figure 2 illustrates this model for the three-
dimensional case.

Figure 2. The principle of CPD for a three-dimensional tensor [12].

One of the shortcomings of CPD is the need for a priori in-
formation on the decomposition rank R. In matrix factorization,
this can, however, be done automatically. In the following, we
will therefore introduce an approach to automatically remove
motion artifacts from the ECG by predicting the tensor rank
based on readily available statistical signal characteristics.

III. ALGORITHM

Our approach’s basic premise is combining the measurements
from a reference sensor (e.g., accelerometer) and the noisy ECG.
Because the reference sensor picks up the body movements,
it inevitably characterizes the motion artifacts. By combining
the data from the accelerometer and the ECG, we apply CPD
to extract features that the two sensor types have in common
– these will yield the motion artifacts. The extracted artifacts
can subsequently be subtracted from the noisy ECG. Figure 3
depicts the process for artifact removal that we employed and
which will be explained more precisely in the following.
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Figure 3. Framework for artifact removal using CPD.

A. Experimental Setup and Data Acquisition

We employed the Shimmer3 platform [13] to measure the
cardiac activity and characterize the movements performed
using the reference sensor. The Shimmer3 platform integrates,
among others, an ECG and an accelerometer. We recorded
120 s data at 512 Hz from ten healthy subjects in rest and
while performing various physical activities. Our selection of
movements was based on the diverse aspects of everyday life
and accommodates high impact movements (running, jumping,
and climbing stairs) and movements of moderate-intensity
(standing up, bending forward, and walking). We tried to make
the executions of the movements as natural as possible. Only
bending forward, standing up, and jumping were stationary,
meaning they were performed on the spot.

B. Preprocessing and Tensorization

We preprocessed all data by employing a bandpass filter
between 0.5–150 Hz to remove noise outside of the spectral
range containing valuable cardiac information. The selection
of cutoff frequencies was based on a recommendation by the
American Heart Association (AHA) [14]. They recommend
employing a low-frequency cutoff of 0.05 Hz for routine filters,
which can be relaxed to 0.5 Hz for linear digital filters with
zero phase distortion.

Typically, ECG measurements are available as a vector
(single-channel) or matrix (multi-channel). Therefore, the
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ECG needs to be transformed into a tensor before applying
CPD – this process is called tensorization. A commonly
applied method is employing time-frequency transformations to
transform signals into the time-frequency space. One possibility
for this are so-called wavelet transformations. These methods
use a base function that is scaled and shifted through the signal
to capture low and high frequency components in the data.
Thereby, wavelet transformations maintain a high frequency
resolution for low frequencies and a high time resolution for
high frequencies, making its application suitable to capture the
broad range of spectral characteristics in the ECG.

We apply the maximal overlap discrete wavelet transform
(MODWT) with the Haar wavelet as mother wavelet to
transform the ECG and the accelerometer into the time-
frequency space. The MODWT is a variant of the discrete
wavelet transform (DWT) that is translation-invariant, i.e., the
signal is invariant against shifts in the time domain. In contrast
to DWT, the temporal features of the data (i.e., R peak) remain
aligned and are not shifted with each wavelet level.

Both sensor data are now made up by the dimensions samples
× scale. Note: The dimension scale results from the scaled
versions of the base function of the MODWT. It is inversely
proportional to the frequency. In our case, each matrix contains
13 different wavelet scales providing access to the signals’
temporal and spectral features. Figure 4 illustrates how the
wavelet transformed ECG and accelerometer (in matrix shape)
are combined to form a three-dimensional tensor. The tensor is
then made up by the dimensions: channel × samples × scale.
With that, the CPD can explore temporal, spectral, and spatial
(across channels) correlations in the data to find latent features.
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Figure 4. Tensorization: Constructing a tensor from two matrices.

C. Evaluation

One of the key aspects of motion artifact removal is
objectively evaluating the approach. The ECG can either be
recorded from a subject in motion, resulting in noise corrupting
the signal, or in rest, providing a noise-free ECG. However,
due to the non-stationary characteristics of ECG signals, the
noise-free segments cannot be used to evaluate artifact removal
in the noisy segments. This means that the heart naturally beats
irregularly, and one heartbeat is not identical to the next. As a

result, a segment recorded at rest cannot be used to evaluate
artifact removal in subsequent motion segments because the
underlying cardiac information has changed and is unknown.

Artificially corrupted data are regularly employed to assess
the performance of motion artifact removal methods [7], [15].
Therefore, isolated artifacts need to be available to combine
them with clean ECG segments.

We placed one sensor node at the back of each subject
around the height of the lumbar curve, where cardiac influence
is assumed to be negligible [7], [15], to record a single-channel
ECG and the acceleration. Because the cardiac information
delivered is marginal, motion artifacts dominate the ECG
recorded there. These artifacts can subsequently be added
to a clean ECG taken from the front of the torso in rest to
generate artificially corrupted signals. Figure 5 illustrates the
arrangement of the electrodes and the sensor nodes at the front
and the back.

(a) Front (b) Back

Figure 5. Sensor node and electrode placement to record ECG and isolated
motion artifacts.

Subsequently, we can generate artificially corrupted ECG
sart by combing the clean ECG scardiac with the isolated
motion artifact amotion:

sart(t) = scardiac(t) + amotion(t) (2)

We recorded the ECG in rest and motion from a total of
ten subjects. Thus, for each movement type, there exist ten
recordings of isolated motion artifacts. We subsequently used
these artifacts and added them to the clean ECG from all ten
subjects. Therefore, for each movement, 100 noisy ECG with
the respective noise-free ECG are available. The following
metrics can then be employed to quantify the artifact removal
method:

RMSE =

√√√√ 1

n

n∑
i=1

(si − ŝi)2 (3)

SNRdB = 10 log10

(
Psignal

Pnoise

)
(4)

where the root mean squared error (RMSE) quantifies the
error between the clean ECG s and its estimation ŝ and the
SNR quantifies the power of the signal Psignal with respect to
the power of the noise Pnoise.

D. Rank Estimation

The central parameter for the CPD model is the decom-
position rank, which must be defined before the data can be
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decomposed. A commonly applied method to estimate the
tensor rank is core consistency diagnostic (CONCORDIA).
CONCORDIA requires the iterative computation of the CPD
model for a large number of different decomposition ranks.
Subsequently, the best rank can be determined based on the core
consistency of each computed model. However, this method
is computationally intense because the number of iterations
until convergence varies, and the repeated computation of the
CPD model is time-consuming. Alternative methods for rank
estimation (RELFIT, LOSS function) similarly apply iterative
techniques, which are impractical for mobile ECG due to the
time and resource requirements. [16]

In the following, we propose a method to avoid iterative
operations by considering statistical parameters of the noisy
ECG. Therefore, we investigated the relationship between the
model rank and the performance in motion artifact removal
concerning the SNR. We employed CPD models with varying
rank of nrank ∈ [1, 15] to remove motion artifacts from the
ECG with a fixed rank (refer to Fig. 3). The upper limit was
chosen as our analysis indicated that higher ranks yielded
strongly correlated components, a phenomenon also described
in [17]. We generated artificially corrupted ECG with SNR in
the range of −10 dB to 5 dB to simulate different corruption
levels. The goal is to 1) identify the rank that yields the highest
SNR and 2) find a parameter that can be used to predict this
rank.
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Figure 6. SNR as a function of the decomposition rank.

Figure 6 depicts the SNR after motion artifact removal with
a CPD model for bending forward at four noise levels. It is
apparent that the optimal decomposition rank depends on the
SNR level in the noisy ECG. For all movements, the rank is
strongly correlated to the SNR in the signal (Rcorr = −0.82),
i.e., a higher rank is required if the noise in the signal is
stronger. Unfortunately, the SNR can not be determined in
advance because detailed knowledge of the noise contaminating
the signal is required.

Thus we considered commonly employed statistical parame-
ters that characterize the ECG quality and quantify the noise
level. These signal quality indices (SQIs) are readily accessible
and can be computed without the knowledge of the signals’
actual noise (refer to [18]) at low computational costs. The
following parameters were applied to estimate the model rank:

kSQI Kurtosis: The noise-free ECG is expected to be highly
non-Gaussian since it is not random. [18], [19]

sSQI Skewness: The noise-free ECG is expected to be
highly skewed due to the QRS complex. [18]–[20]

iorSQI Ratio between the signal power inside the QRS
complex band (5–40 Hz) and outside of this band.
[19]

pSQI Relative power in the narrowed QRS complex band
(5–15 Hz). [18], [21]

basSQI Relative power in the baseline band 0–1 Hz with
respect to the power in the interval 0–40 Hz. [18],
[19], [21]

A linear regression algorithm was employed to predict the
model rank based on these SQI. Therefore, the regression
model was trained using the best decomposition rank nbest as
response variable y and the five SQIs as the predictors x1...5.

Our approach was subsequently validated by employing
cross-validation (CV) to avoid the already known best rank for
a particular subject and movement to influence the prediction
model. We excluded each subject once from training data and
trained the linear model with the remaining data (best rank and
SQIs). This model was subsequently employed to predict the
rank and remove the motion artifacts according to Figure 3.

IV. RESULTS

To quantify the results, we considered the SNR before artifact
removal and afterward. Similarly, we calculated the RMSE
between the noisy ECG respectively the denoised ECG and the
clean ECG. Table I illustrates the results of our proposed
method as the mean value over the six movement types
considered.

We compared the approach to two methods that are es-
tablished in the literature. The AF uses the accelerometer
as a reference for the motion artifacts and was implemented
using least mean square (LMS) optimization [8]. Secondly,
we employed a method that is based on wavelet denoising,
which modifies specific wavelet coefficients to remove the
artifacts [10].

Table I
COMPARISON OF THE PERFORMANCE IN MOTION ARTIFACT REMOVAL WITH

REFERENCE METHODS.

Method SNR in dB RMSE

before after before after

CPD -10 0.3 0.15 0.11
-5 0.8 0.13 0.10
0 2.0 0.10 0.09
5 4.4 0.06 0.07

LMS-AF -10 -4.5 0.15 0.21
-5 -1.4 0.13 0.15
0 -0.5 0.10 0.11
5 -1.6 0.06 0.10

Wavelet Denoising -10 -6.0 0.15 0.25
-5 -1.9 0.13 0.16
0 1.1 0.10 0.11
5 2.9 0.06 0.09
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The CPD model outperforms the LMS-AF and the wavelet
denoising method in both SNR and RMSE. The SNR can be
increased up to ∆ SNR = 10.3 dB.

Furthermore, the enhanced performance of the CPD model
is also reflected in visual artifact removal. Figure 7 illustrates
the results for one subject performing the movement bending
forward. Note: The varying R peak amplitude for CPD results
from scaling operations and is not related to the artifact removal
method itself. It is apparent that CPD removes the motion
artifacts more reliably. While the LMS-AF removes artifacts,
it also removes P waves and introduces additional signal alter-
ations at the beginning of the segment. The wavelet denoising
approach removes the majority of the high frequency noise
by smoothing the signal. However, the signal characteristics
are also modified (e.g., R peak). This is likely because the
method is primarily based on detecting outliers and modifying
their wavelet coefficients. However, movements in everyday
life are instead executed continuously for a certain time, which
produces persistent interferences.
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Figure 7. Comparison of motion artifact removal with state of the art for an
SNR of −10 dB.

V. CONCLUSION

This paper employed canonical polyadic decomposition com-
bining the measurements from ECG and an accelerometer to
remove motion artifacts. Thereby, we extracted mutual features
– the motion artifacts – and removed them from the noisy ECG.
We proposed a method to predict the decomposition rank based
on readily accessible statistical signal quality parameters. The
approach was evaluated by artificially corrupting clean ECG
segments with genuine motion artifacts generated at isolated
locations. The results suggest that CPD can successfully remove
motion artifacts for various movement types and outperforms
two commonly employed artifact removal methods.

In the future, we intend to intensify our research on tensor
decomposition. Advanced decomposition strategies that allow
more flexible interactions between the factors, e.g., block term
decomposition, might improve artifact removal.
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