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Abstract—Head gestures such as head nodding and shaking
play a prominent role in conversation, indicating active listening
and interest in a conversation. We aim to create a tool to assess
these physical conversational engagement cues in the context of a
mock job interview. We propose a hidden Markov model-based
architecture to locate and classify head nods and shakes from
head motion data in an online fashion. Based on the number,
velocity, and duration of the detected head gestures, we evaluate
the conversational engagement level using a linear regression
model. For the interview segments, high agreement was reached
between model scores and scores from human raters. We consider
this system as a path toward augmented reality and virtual
reality-based training that can broaden participation in careers
with competitive hiring scenarios.

Index Terms—Conversational engagement, job interview train-
ing, head motion, hidden Markov models.

I. INTRODUCTION

Technologies are needed that support assessment and learn-
ing of social communication skills. Cues that indicate active
listening include physical backchannels such as head nodding
and shaking, facial expressions, and oral backchannels, such
as saying “yeah” and “mm-hmm”. Conversational engagement
behavior is atypical in individuals with autism spectrum disor-
der (ASD). Studies report that 1 in 45 individuals is diagnosed
with ASD and only 15% are employed [1]. While many adults
with ASD have the cognitive skill to contribute substantially
to the workforce, social communication deficits prevent many
from obtaining employment.

Here we report on a system that uses an augmented reality
(AR) headset in the context of a social interaction (an inter-
view) to score conversational engagement from head motion
data. This approach would translate well to a virtual reality
(VR) headset in which the subject interacts with a virtual
interviewer. Virtual-based instruction has multiple advantages
from a training perspective as scenarios are repeatable, control-
lable and individualizable [2]. This is evidenced in social skills
research, including teaching interpersonal communication and
interview skills. In a review, Bonaccio and colleagues [3]
investigate nonverbal behavior in the workplace and identify
many “codes” of nonverbal behavior, from kinesics (commu-
nication through body movement), to haptics (communication
through touch), vocalics (communication through voice), and
proxemics (communication through physical space). In terms
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of interview specific skills, Arvey and Campion [4] found that
nonverbal behaviors like eye gaze and body movement signifi-
cantly influence how an interviewer perceives an interviewee’s
performance. These perceptions, then, bias the selection of
new employees.

Culture affects the meaning and execution of head gestures.
For example, the “head bobble” is common in South Asia,
notably in India [5]; this side-to-side head tilting is similar to
a head shake but is used in place of a nod to show compliance.
So, the models developed here for training conversational
engagement cues have obvious cultural limitations but are also
readily extensible through culturally-appropriate modules.

In this work, subjects wearing an AR headset respond to
a mock interviewer who follows a script. The conversational
engagement of the subjects is scored by three raters. The head
motion data is input to hidden Markov models (HMMs) to de-
tect head nods and shakes. The number, velocity and duration
of detected head gestures are used in a linear regression step to
predict the rater scores. The contributions of this paper are that
we build (1) an HMM structure for detection of head nodding
and shaking from inertial measurement unit (IMU) data in the
context of subjects who move freely during a conversation,
and (2) an evaluation model that scores physical backchannels
during a mock interview, and has high agreement with raters.

II. RELATED WORK

As we aim to develop a system to assist individuals in prac-
ticing and developing their conversational interaction skills, we
use IMU data from a head-mounted display (HMD) so that
the system could function with a virtual interviewer in a VR
setup or with an in-person coach in an AR setup. While most
past research on head gesture detection involves systems that
track a subject’s face via an external camera, some past work
uses depth sensors or HMDs to exploit 3D head motion data.
Yi et al. [6] built a similarity-based model using gyroscope
and accelerometer data from smart glasses. Dynamic Time
Warping (DTW) was used to recognize certain head move-
ments (e.g., nod/shake, tilting, circling). Aiming to replace in-
air hand commands of the Microsoft HoloLens glasses with
head gestures, [7] used DTW to produce similarity scores
between collected data sequences and target head gestures.
In [8], Google Cardboard VR glasses were used in a DTW-
based system that detects head movements from IMU data.
Zhao and Allison [9] implemented a cascaded-HMM structure
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with nine discrete left-right HMMs to recognize simple head
movements from real-time angular velocity data using the
Oculus Rift DK2. Severin [10] placed an inertial sensor on
an audio headset and tracked the IMU data (roll, pitch, yaw)
to detect 8 custom head movements, exploring 9 predictive
models including the multilayer perceptron.

Virtual training scenarios traditionally used 2D screens, e.g.,
Baur et al. [11] and Schouten et al. [12] collected nonverbal
social cues, including hand movements, head direction, and
facial expressions. The findings in these studies comport with
previous research like [3], [4] which significantly weights the
influence of nonverbal behaviors on interpersonal communica-
tion. The growing body of research on virtual based training
systems supports the superiority of HMD systems (encom-
passing both VR and AR) over 2D methods. The authors of
[13] used Google Glass to track autistic individuals’ head
movements to provide real-time feedback on gaze direction
and speaking volume during an interview. The guidance given
recognized that direct gaze might be uncomfortable, but some
situations demand it. In [14], researchers used the Microsoft
Kinect and physiological sensors, and measured college stu-
dents’ facial expressions and anxiety levels as measures of
interview performance. Both studies indicated that the AR
system can help certain groups cope with interview anxiety.

Aimed at young professionals, the system in [15] integrated
an HTC Vive Pro VR headset with chat-bots, facial recognition
software, physiological monitoring and emotion recognition
from text responses to evaluate a user’s interview performance.
In another study, Taupiac et al. [16] created role-playing
scenarios for managers and sales representatives, again using
the HTC Vive Pro. These studies do not use head motion data.

One population that faces challenges in these areas are those
on the autism spectrum. Didehbani et al. [17] taught social
skills to autistic children using a VR HMD and the online
platform SecondLife. Researchers measured emotion recogni-
tion, social attribution, and attention via tests before and after
VR-based training. It is interesting to note the researchers’ use
of traditional assessment tools for a nontraditional VR-based
training. Although such tools have validated construct validity,
using static attention assessments to evaluate the success of
this type of training could easily miss improved dynamic
attention allocation. An analysis system like the one proposed
in Section III could provide more objective measures of a
user’s attentiveness and dynamic attention allocation.

III. HEAD GESTURE CLASSIFICATION USING HMMS

Here we describe the data collection and model building for
head gesture classification. This is a means to our end goal,
scoring conversational engagement levels, which is described
in Section IV and involves an independent data collection step.

A. Data Collection

The Magic Leap One AR headset produces (z, y, z) head
position data at 60 samples/s. Ten adult subjects (7 men, 3
women) wearing the headset were asked to respond to 72
questions with head nods or shakes accompanied by yes or

no oral answers. To elicit a range of behaviors, the questions
included short items (“Do you live on campus?”’), longer ones
(“If my cousin was half of my age when I was 8, he will
be 36 when I am 40, is that true?”) and ones that might
prompt a smile or some puzzlement (“Russian astronauts
successfully landed on the Sun in 2018, is that correct?”).
Answer correctness was not a concern, and subjects were
asked to guess if needed. The headset recorded video, audio
and 3D head position data during each session.

The videos were manually annotated to locate the start and
end of each relevant head gesture. The longest, shortest, and
average head gesture sequences had 193 samples (3.22s), 36
samples (600ms), and 95 samples (1.58s). A data cleaning step
removed 82 labeled gesture sequences because they were cases
where (a) the subject verbally answered but forgot to execute
a head motion, (b) the gesture resembled a “head bobble”
in which the motion was clearly similar to a head shake but
was associated with an affirmative answer, and (c) there was
a large body movement, as in cases of distraction. After data
cleaning, we were left with 560 training gesture sequences
(302 nods, 258 shakes). We also extracted 284 non-gesture
sequences from the same data; consisting of slight rotations
in various directions as well as the idle state, this set was
used as the negative or “neither” class while training. In all,
the training set consists of about 23 minutes of data.

For online validation, we separated the video sections
corresponding to the last 8 gestures. The 10 validation data
streams (corresponding to 10 subjects) had 78 validation
gesture sequences after cleaning. Since the validation step is
online, the validation streams capture natural movements, in
addition to the head gestures.

B. System Architecture

The system begins with an HMM structure (Fig. 1) contain-
ing three parallel HMMs; ¥, and W_; are trained to detect
head nods and shakes, and ¥, aims to detect everything else.
In the Magic Leap 3D data, x is the horizontal left-right axis,
vy is the vertical axis, and z is the horizontal forward-backward
axis. The HMM inputs are = and y velocity values, that is the
position changes in x and y between consecutive samples (z
components were discarded because they were found in the
validation step to provide no benefit). In Fig. 1, ¥y, ¥, and
W_; are all left-right HMMs. The system processes sequences
of x and y velocity values in overlapping windows. The HMM
structure involves a hyperparameter set consisting of {Mj,
Nl, M(), NQ, M_l, N_l, Wsizes Ssize}v where Mi and Ni
are the numbers of observation symbols and hidden states in
HMM i, and wg;.e and s, are the window size and step
size of the sliding window. The velocity values go through
separate quantization in each HMM since the numbers of
clusters (M;) might be different. The quantization discretizes
the raw velocities using the centroids obtained during training,
and the minimum distance classifier. After obtaining a discrete
observation sequence (O), the Forward algorithm calculates the
related log-likelihoods (/(O | ¥;)). The class of the HMM that
produces the highest log-likelihood which is also greater than
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Fig. 1 HMM Structure: VQ stands for vector quantization. A, B, C are the log-likelihoods from the HMMs for the Nod, Shake, and Neither classes, and
Amin, and By, are the minimum log-likelihoods achieved for the head gesture classes during training.

the associated minimum training log-likelihood determines the
head movement type in that window. If there is a tie between
two log-likelihoods, or the maximum log-likelihood is not
greater than the related minimum training log-likelihood, the
model classifies a window as “neither”.

Each window classification is associated with a confidence,
defined as a ratio of log-likelihoods. If a window (W) is labeled
as a head nod, the related classification confidence is:

(W | ¥y)
UW | W)+ LW | Wo)+UW | T_y)

Here, (W | ¥q), (W | Uy) and (W | U_;) are the log-
likelihoods for the head nod, neither, and head shake classes.

As a head gesture might get separated into several windows
of which one or more might be misclassified, the complete
sequence of class labels is filtered to correct errors. A run
length (RL) filter with two parameters, entry (77) and exit
(T2), operates on two classes, head gesture and non-gesture.
If the classification result is a head gesture for at least 7'/
consecutive windows, those windows are considered as the
start of a head gesture. A head gesture ends when the label is
“neither” for at least 72 consecutive windows. Variations on
this type of RL filter have been used in applications involving
temporal behavioral data, including gaze data for detecting
looks to objects [18], and human activity recognition [19].
Each run length of windows considered to be a head gesture
is labeled as a nod or shake based on the majority vote of the
window labels; ties are resolved using the label of the highest
confidence window. As an example, with 7/ =1 and 72 =2, a
sequence of labels S = {0, 0, 1, 1, 0, -1, 1, 0, -1, 0, 0} would
produce output S = {0,0, 1,1, 1, 1, 1, 1, 1, 0, 0}.

1) Training: As in [9], the raw input vectors (velocity 2-
tuples in our case) are vector quantized using the k-means
algorithm with the number of clusters chosen to equal the
number of velocity observation symbols. After obtaining the
quantized observation sequences (O) from the training se-
quences, the Baum-Welch algorithm is used to train each
HMM with the sequences from the associated class. The
minimum training log-likelihoods for ¥y, ¥y and ¥_; are
-94.62, -105.32 and -89.79, while the maximum training log-
likelihoods are -17.92, -15.58 and -13.56.

2) Validation: While the HMMs are trained with annotated
gesture sequences, we perform online validation, meaning that
a sliding window extracts and classifies data segments from a

C:

TABLE I: Classification Results for the Best Configuration

Prediction Head Nod | Head Shake | Neither
True
Head Nod 36 0 0
Head Shake 41 !
Neither 3 U A

recording. The window shifts by sg;.., and the parallel HMM
structure processes the next window. Online validation allowed
us to evaluate the system on many kinds of non-gesture
head movements which might not have been encountered in
manually annotated “neither” sequences. We evaluated values
for N; from 2 to 10, for M; from 2 to 50, for wy;,. from
35 samples (583ms) to 65 samples (1.08s), for ss;,. from
Weize — 30 t0 wWgie — 10, and for T1 and T2 from 1 to
10. For optimizing the hyperparameters, a possible objective
function is the macro-averaged F1I score (harmonic mean of
the multi-class precision and multi-class recall). For scoring
conversation engagement levels, head gesture duration may be
relevant, for which the Intersection over Union (IoU) metric
is useful. We optimized based on the sum of FI and IoU
values on the 10 continuous validation data streams involving
78 head gestures, leading to the hyperparameter set I = {M 1
=34, Ny =7, Myg=10, Ng =7, M_y =27, N_y =7, Wize
= 38 samples (633ms), 35, = 28 samples (467ms), T1 =
1, T2 = 2}. The validation results are in Table 1. Here, it
is not meaningful to report the number of “neither” gestures
since it is arbitrary to say how many overlapping ‘“neither”
windows constitute a “neither” gesture. The precision, recall
and F1 score are 88.51%, 98.72% and 93.34%, respectively.
Since the processing happens online using sliding windows,
one true head gesture sequence can be falsely detected as
multiple sequences. While calculating the evaluation metrics,
for such mistakes we label only the longest sequence as a true
positive, regarding the rest as false positives.

The IoU value is 64.8%, largely due to detection errors
rather than duration errors. In the validation data, there are 10
false positives and 1 false negative (of 78 true head gestures).
Excluding those from the IoU and examining the mismatches
for true positives, we find the average absolute error in start
(end) time is 11 (18) samples. These offsets are smaller than
both the window size (ws;,.) and step size (Ss;..); such errors
are inevitable with a sliding window approach as windows will
not perfectly overlap with true sequence locations.
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IV. SCORING ENGAGEMENT LEVELS IN INTERVIEWS
A. Data Collection and Ground Truth

We created a job interview script which takes about 10
minutes to complete. The mock interviewer is scripted, and the
respondent is unscripted. The script includes questions about
the characteristics and experience of the interviewee, and parts
where the interviewer describes the lab and the projects on
which the interviewee might work. During these descriptions,
there are opportunities for the interviewee to nod in response,
where the interviewer provides backchannel prompts such as
“isn’t that right?” or “you know what I mean?”.

Fifteen adult subjects (9 men, 6 women) took part in the
mock interviews. Each was interviewed twice and was asked to
perform two different engagement levels. A subject enacting
high engagement might show excitement, give many easily
audible responses, and provide animated head nodding or
shaking. An interviewee enacting low engagement may be pas-
sive and perform few head gestures. We divided the script into
6 parts, resulting in 180 data recordings (15 subjects x 2 times
X 6 parts). One part provided 5 head gesture opportunities,
three contained 6 opportunities, and the remaining two parts
had 7 opportunities. These opportunities correspond to yes/no
questions as well as backchannel prompts. Even without a
specific question or prompt, the interviewee can choose to nod
along during the descriptive portions, and can deliver their own
short answers with more or less physical backchanneling.

During each interview, audio and video are recorded from an
external camera. Interview segments are scored by three raters
based on the video visuals, ignoring the answer content. Our
scoring system is: (1) Head movements are absent or nearly
absent. The subject appears either disengaged or impassive
with low responsiveness. (2) Occasional head gestures. The
subject may appear attentive but with lower than average
responsiveness. (3) Typical or average engagement level for a
two-way conversation with some head gestures. (4) Frequent
head gestures, with above average engagement. (5) Lots of
head gestures. The subject seems bouncy and enthusiastic.
Raters could give intermediate values (1.5, 2.5, etc.) when the
behavior seemed intermediate between two descriptions. Fig.
2 depicts the distribution of rater scores.

B. Scoring Model

The scoring model consists of the above HMM architecture
and filtering, together with a feature extractor and a linear
regression model that uses extracted head gesture features to
predict an engagement score. To choose features and fit the
model, we use cross-validation (CV), leaving out one subject at
a time. As a preprocessing step in each CV fold, we use min-
max normalization, normalizing both training and test data
using the maximum and minimum values of each feature in the
training set. We have 15 subjects with 12 interview segments
each. Each interview segment is scored by three raters, so a
segment has three labels. We fit the model to the data from 14
subjects which forms a training set of 504 interview segments,
and test on the 12 unique segments from the subject left out.

HEE Raier |
BN Rater 2
I Rajer 3

E 4z =

Occurrence
= =2 =

=

Fig. 2 Distribution of scores given by three raters

We consider the following features: Total number of de-
tected head gestures in a segment, Mean velocity (cm/sample)
and Mean maximum velocity (cm/sample) and Duration (s) of
the detected head gestures, Average head movement velocity
(cm/sample) in the parts that are not classified as a head
gesture. For each test segment, we compare the model output
and the ground truth (average rater score) using Mean Absolute
Error (MAE). We fit the regression model based on different
feature subsets using subject-wise CV. The most descriptive
feature on its own is the number of detected head gestures
(MAE = 0.445, standard deviation = 0.344). The best feature
pair is the number and average duration of detected head
gestures (MAE = 0.373, s.d. = 0.292), and adding the average
velocity maintains the MAE at 0.373, and slightly reduces the
s.d. to 0.287. We do not use the other candidate features as
they produce slightly worse MAE. The regression model is:

score = « - gStcount + B : QStavg.vel. +w- gstavg.dur +n.
V. RESULTS

With subject-wise CV to fit the model, we get 15 different
models, each with a different {a, 8, w, n} set; the average
values across the CV folds are {& = 2.35, B =087, w =
1.16, ) = 1.27} with standard deviations of 0.054, 0.064, 0.080
and 0.025. Fig. 3 presents a scatter plot of model prediction
values vs. average rater scores for each interview segment.
Purple lines delimit the area where the absolute prediction
error is below 0.5 (73.9% of points) while red lines correspond
to error less than 1 (97.2% of points). The mean absolute
prediction error is 0.37 (s.d. = 0.29). The maximum over and
under estimations are 1.58 and 1.14.

Fig. 4 shows the cumulative distributions of prediction
errors for different binned average rater scores (e.g., average
scores between 4.25 and 4.75 go in the bin for 4.5). The plot
does not contain a line for level 5, as the average score never
exceeded 4.75. The model produces the largest errors for very
low engagement examples; this is potentially not a significant
drawback since whether a user receives a low or very low
score, they would be aware of the need to display head gestures
more frequently and enthusiastically. The model has higher
accuracy in the mid to high range, allowing users to calibrate
to a range of typical to high conversational engagement levels.
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Fig. 4 Cumulative distribution curves of errors for each engagement level

VI. CONCLUSION

Neurodivergent employees bring unique perspectives to
teams, yet hiring these employees remains a challenge due
to mismatched expectations about what constitutes engaged
social conversation appropriate in an interview [20]. While
multiple efforts are underway to change hiring practices to be
more inclusive [20], we need better tools to help neurodiver-
gent individuals practice normative social conversation skills.
Our AR headset-based system tracks head position, detects
head nods and shakes, and scores conversational engagement
in terms of physical backchannels. The number of detected
head gestures in a short interview segment, along with gesture
velocity and duration, allows a simple model to score similarly
to human evaluators.

While head gesture detection is widely studied, few studies
use head motion data, and most that do [6]-[10] are in
a context where the user aims to execute specific control
gestures (a type of human computer interface) rather than
moving freely in a naturalistic conversation. The context of
a mock job interview naturally affects interviewees’ head
movements, however arbitrary head movements (e.g., looking
away from the interviewer) were present in our data. The two
main contributions of this paper are therefore performing head
gesture detection with high accuracy in an online fashion while
allowing subjects to move freely, and showing that extracted

head gesture information in a simple model allows prediction
of conversational engagement that has high agreement with
human raters. For future work, an automatic rating system
integrated with a VR platform would allow for solo practice.
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