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Abstract—Electroencephalography (EEG) signals have been
using for brain-computer interface applications for the last two
decades. Motor imagery (MI) signals are one of the EEG signal
types formed by imagining a limb’s movement. Recently with the
help of deep neural networks (DNN) for classifying MI signals
using time-frequency (TF) features, considerable performance
improvement has been reported. This paper proposes using
a well-known TF representation technique called Constant-Q
Transform (CQT) for the MI signal classification. Experiments
conducted on BCI IV 2b dataset with DNN classifier using CQT
spectrogram show that CQT outperforms traditional short-time
Fourier transform (STFT) representation.

Index Terms—brain-computer interface, motor imagery, elec-
troencephalography, constant-Q transform

I. INTRODUCTION

Brain-Computer Interface (BCI) applications continue to
develop to become a powerful tool to make easier commu-
nication between humans and machines. It is also a promising
phenomenon for individuals with neuromuscular disorders,
making it possible to control machines without using neuro-
muscular pathways.

Electroencephalography (EEG) signals measured from the
skull surface are commonly used for BCI applications [1].
Motor imagery (MI) signals are one of the EEG signal
representations widely used in BCI studies. MI signals are
considered as an event-related desynchronization (ERD) and
event-related synchronization (ERS) pattern that occurs within
the EEG signal, similar to the patterns observed under the
presence of motor activity when imagining to move a limb
(e.g. hands, feet and tongue) [2]. An EEG signal consists of
five sub-frequency bands; gamma (>30 Hz), beta (12-30 Hz),
alpha (8-12 Hz), theta (4-7 Hz) and delta (<4 Hz) waves.
ERD and ERS patterns are generally observed in alpha and
beta bands [3], [4].

Classification of MI signals is a typical pattern recogni-
tion task consisting of two phases: feature extraction and
classification. Since EEG signals are weak, non-stationary,
aperiodic and time-varying complex signals, a special attention
is required while processing them for feature extraction [5].
Commonly used feature extraction methods for MI signal
classification are time-domain features such as empirical mode
decomposition (EMD) [6] and root-mean squares (RMS) [7],
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frequency-domain features extracted using fast Fourier trans-
form (FFT) [8] and power spectral density (PSD) of the
signal [9], spatial filtering features such as common spatial
patterns (CSP) [10] and TF domain features obtained from
wavelet transform (WT) [11] and STFT [12]-[14]. For the
classification, in turn, principal component analysis (PCA) [5],
support vector machines (SVM) [9], linear discriminant anal-
ysis (LDA) [9] and K-nearest neighbors (kNN) [6] methods
are widely used. Besides traditional classifiers, deep learning
frameworks such as convolutional neural networks (CNN)
[12], [14], [15], deep belief networks (DBN) [5], [8] and long
short-term memory (LSTM) [16] have become popular and
promising results were reported [3]-[5], [17], [18]. Classifying
MI signals using TF features with CNN architecture is the
most common method [17].

Several studies used features extracted using STFT for MI
signal classification. In [15], a CNN combined with stacked
auto-encoders (SAE) was proposed using the STFT features
extracted from two seconds long EEG signals. In that work,
authors extracted the alpha (8-12 Hz) and beta (12-30 Hz)
rhythms from the STFT representation and then the features of
each EEG channel was concatenated to obtain a single input
image for each signal. The combined input image was then
used with CNN and 77.6% average accuracy was obtained for
all subjects in BCI IV 2b dataset. In [16], STFT was used to
extract features after filtering two seconds long EEG signals
with a bandpass filter (5-30 Hz). The features were extracted
from the desired frequency bands (8-30 Hz) using the STFT,
resulting in a feature matrix of 7 x 15 dimension for each
channel. Using the concatenated feature matrices as the input
of the CNN and LSTM classifiers were compared, and it was
shown that CNN is superior to LSTM. In [13], 14 x 14 features
were extracted for each channel from the signal of duration
two seconds signal by STFT. Then evaluated with several deep
learning frameworks and it was shown that CapsNet based
framework gives the highest classification accuracy of 78.44%
on BCI IV 2b dataset. In [11], both STFT and continuous
wavelet transform (CWT) were used for feature extraction, and
CNN was used for classification. It was concluded that both
STFT and CWT equally work well on classifying MI signals
while CWT slightly (+1.17%) performs better than STFT.

Taking the promising results obtained using STFT TF
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representation into account, in this paper, we propose to use
the CQT to obtain the TF representation for EEG signal
classification. The advantage of the CQT over discrete Fourier
transform (DFT) is the fact that while DFT provides a fixed
frequency resolution, CQT ensures higher frequency resolution
in low-frequency bands by employing geometrically spaced
frequency bins. Thus, intuitively, extracting TF features using
a variable frequency resolution would be more informative
for MI signal classification. STFT and CQT spectrograms
are used with a CNN-based classifier and we compare their
performances on BCI IV 2b dataset.

II. TIME-FREQUENCY REPRESENTATION

Spectral brain activity varies over time when differ-
ent MI tasks are carried out. Although EEG signals are
one-dimensional arrays, they can be represented as two-
dimensional images by utilizing WT, STFT and CQT. Such
representation makes it possible to observe energy variation
over time during MI tasks [19]. In this section, we briefly de-
scribe the well-known STFT and the proposed CQT methods.

A. Short-time Fourier Transform

Since EEG is a non-stationary signal, its spectral content
changes over time. Hence, applying DFT to EEG signal over
a long window does not reveal the spectral changes over time.
In order to avoid this, DFT is applied over short segments of
the signal. STFT is a popular technique based on DFT which
helps to analyze the energy variation of a signal over time. To
compute the STFT of a discrete-time signal z[n], the signal
is first divided into short overlapping segments. Each segment
is multiplied by a window function (generally a data tapering
window is used). This results in a set of windowed frames,
and STFT is defined as the DFT of the windowed segments:

+oo

X (m, k)= Z z[mlw[n — m]e I N Fm (1
where w[n] is the window function consisting of a total of
N samples and the sequence z[m]w[n — m] represents the
short segment of the EEG signal z[n|. The STFT of the signal
X(m,k) is therefore a function of two variables where m
is the time variable (generally represents the frame index)
and k is the discrete-frequency index. Hence STFT is a TF
representation of the signal, and its graphical visualization is
known as the spectrogram of the signal.

From the above definition, STFT can be considered as a
filterbank where the window function w[n] can be thought
as the impulse response of the filter. So that the signal
is first passed through the filter with linear phase factor
(wln]e ¥ k = 0,1,..,N — 1) and then the output of the
each filter is demodulated by e~/ ¥k The @ factor is a metric
which measures the selectivity of each filter (w[n]e ™7 % *) and
it is defined as:

fe
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where f. and 0 f are the center frequency and bandwidth of
each filter, respectively. Since the bandwidth of each filter

(w[n]e™7 ¥ *) is constant in the STFT, the @ factor is therefore
an increasing function of the frequency.

B. Constant Q Transform

Although STFT is the most popular TF representation, one
of the main drawbacks of the STFT is that it increases Q-
factor with frequency. In order to cope with that, another
TF analysis known as the CQT was proposed in [20]. It
was originally developed to process music signals since it
provides perceptually better representation according to the
human perception system. Since speech and EEG signals
have very similar characteristics (non-stationary, aperiodic and
varying in time), CQT is potentially a good candidate for EEG
signal analysis.

The motivation behind the CQT is to obtain a TF feature
with a constant () factor along the entire frequency axis by
spacing center frequencies of the filters geometrically. Thus, it
can obtain a higher frequency resolution at lower frequencies
and a higher temporal resolution at higher frequencies [21].
Given a discrete-time signal z[n], the CQT is defined as:

Nj—1
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where k is the frequency bin, N} is the window length of the
kth bin and aj[n] is the complex conjugate of the complex
basis function for the bin k& which is defined by:

1 n o) k}
agln] = —w | — | exp |—j2mn=— @)
1= e [ o [
Here fi is the center frequency of the kth bin, f, is the
sampling frequency and w[n] is the window function. The

center frequency values are computed by:

fe=h2"5 (5)

where f; is the center frequency of the first bin and B
corresponds to the number of bins per octave. For more details
on the computation of CQT, the readers are referred to [20].

From the above definitions, it is observed that the analysis
window length (Ny) and center frequency values (f;) vary
with the frequency values in contrast to traditional STFT.
Thus, CQT yields a constant Q value for all frequency values.
Fig. 1 shows TF representations of an example EEG signal
obtained using STFT and CQT techniques. From the figure,
although the largest energy variation around 10 Hz can be
observed from both representations, STFT spectrogram rapidly
attenuates above approximately 20 Hz. This is probably be-
cause of the fact that the spectral resolution of the STFT
is considerably high to detect small variations. Although the
frequency resolution of the STFT can be improved by using
a larger window, it clearly reduces the time resolution which
introduces a trade-off. In contrast to STFT, CQT spectrogram
clearly shows the energy variations at low-frequency values.

One would argue that observing STFT and CQT spectro-
grams of a single EEG signal can not be generalized well to
show the effectiveness of the CQT over STFT. To this end
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Fig. 1. Comparison of STFT and CQT spectrograms
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Fig. 2. Long-term spectra obtained from the STFT and CQT

we compute the long-term average STFT and CQT spectra
using 740 EEG signals from a subject for C3 channel. More
specifically STFT and CQT spectrograms are averaged over
all frames and all signals by:

1 T N
TZZ log| X+(n, k)| (©)
t=1 n=1

where X;(n,k) correspond to STFT or CQT spectrograms
of the tth signal, respectively and T is the total number of
EEG signals used to compute average spectra. Fig. 2 shows
the long-term spectra obtained from the STFT and CQT for
class 1 (left hand) and class 2 (right hand). From the figure,
it can clearly be seen that STFT provides a smooth spectra.
However, a more detailed spectral variation can be observed
by CQT. Hence, intuitively CQT will provide more detailed
information about the EEG signals.

I[II. EXPERIMENTAL SETUP
A. Dataset and Pre-processing

The dataset 2b from BCI IV competition [22] is used in the
experiments. It consists of EEG signals collected from nine
right-handed subjects. For each subject, the database consists
of 3 channels (C3, Cz, C4) EEG signals sampled at 250 Hz
which are collected in five sessions. An 50 Hz notch filter and

LTAS(k) =

a band-pass filter with 0.5-100 Hz pass band were applied to
the signals. Total number of EEG signal for each subject varies
between 680 and 760. Since the MI signals are predominantly
alpha and beta waves, a 5-50 Hz band-pass filter has been
applied before feature extraction.

B. Feature Extraction

In this study, both STFT and CQT spectrograms used as
features. It was shown in [4], [12], [15] that observed energy
in the motor cortex area in alpha (8-12 Hz) and beta (12-
30 Hz) bands vary while performing MI task. Therefore, TF
representations are widely used for EEG signal classification.
As mentioned in the preceding section, STFT spectrogram
does not properly reveals the detailed information because
of the fixed frequency resolution. Hence, in this paper, we
propose to use CQT spectrograms as the TF representation.

To compute the STFT spectrogram, each signal is first
divided into short frames consisting of 32 samples with 8
sample frame shift (24 samples of consecutive frames overlap).
Then each frame was windowed using a Hamming window.
256 point DFT of each windowed frame was computed to
obtain the spectrum of each frame. Due to the symmetry
property of the DFT, the first 129 samples were retained.
This results in a spectrogram image of size 129 x 122. In
the previous studies, it was shown that 6-36 Hz frequency
band contains the most discriminative information for EEG
signal classification [4], [12], [15]. Similar observation was
found in our preliminary experiments. Therefore; only 6-36
Hz frequency band was selected from the spectrogram images
rather than using the full 0-125 Hz band. This yields a feature
matrix of size 30 x 122. Since each EEG signal of each subject
in BCI IV 2b dataset composed from three channels (C3, Cz,
C4), each channel was proposed independently and resulting
features were combined. Hence for each trial in the database,
a 90 x 122 dimensional STFT features were extracted. To
compute the CQT spectrogram, we use short windows con-
sisting of 8 samples and the number of frequency bins and the
number of frequency bins per octave are selected as 30 and
12, respectively. A CQT spectrogram of dimension 30 x 126
was obtained using these parameters for each channel. The
standardization, concatenation and scaling steps were applied
similar to STFT, and a 90 x 126 CQT feature matrix was
obtained. The window lengths used to extract STFT and CQT
spectra were determined according to preliminary experiments
in order to obtain the TF images of the similar size for both
methods. One could argue that using three dimensional TF
spectra for each EEG signal as the input would perform better
than combining the EEG channels. However, we found that
combining the channels yields better performance than three-
dimensional representation.

C. Classifier

EEG signal classification was performed using the CNN
model shown in Fig. 3. In order to make a fair performance
comparison of the STFT and CQT spectrograms, the same
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Fig. 3. The proposed method and the details of the CNN-based classifier used in the experiments.

network is used for both features. The parameters at the net-
work (number of filters, size of the filters, activation function
etc.) were optimized by preliminary experiments. As shown
in Fig. 3, the proposed network consists of two convolutional
layers where the first convolutional block contains 30 filters
of dimension 15x1 followed by a max-pooling layer. ReLU
non-linearity was used in the convolutional layers. The output
layer consisting of two nodes which performs the classification
task while the first output node corresponds to the first class
(the class that represents the subject imagines moving his/her
left hand), the second output unit represents the second class
(subject imagines moving his/her right hand). Two different
classification scenarios were considered in the experiments:

« Intra-subject classification: A separate model was trained
for each subject.

« Inter-subject classification: A single model was trained
for all subjects.

In the previous studies, generally intra-subject approach was
used and it was shown to outperform inter-subject method,
as expected. Although inter-subject approach would be more
preferable since a single generic model is trained for all
subjects, it is inferior to the intra-subject method because of
the fact that EEG signal specifications are highly dependent
on the subjects.

Stochastic gradient descent algorithm was used to train the
network with an initial learning rate of 0.01 and it was reduced
to 0.005 after 60 epochs. Maximum number of epochs was
selected as 400 and if validation loss was not reduced for 25
successive epochs, training was terminated. Categorical cross-
entropy was used as the loss function.

Classification experiments were carried out using 10-fold
cross-validation approach where EEG signals of each subject
is divided into ten disjoint subsets and nine subsets were used
to train the system and the remaining one subset was used for
testing and this is repeated for ten times. With this, all of the
signals of each subject are used to test the system. In each
fold, 20% of the training subset is used as validation set to
optimize the network parameters during training. For the inter-
subject approach, in each fold, training subset of all subjects
were combined and a single network was trained.

D. Performance Metrics

In the experiments, the average classification accuracy av-
eraged over all ten-folds is used as the primary performance
criterion. Besides the average accuracy, the standard deviation
of the classification accuracies was calculated and reported in
the experiments.

IV. RESULTS

The average classification accuracy values and the standard
deviations obtained with intra-subject classification approach
using CQT and STFT features are summarized in Table I
From the table, CQT features systematically outperform STFT
for the majority of the subjects. For example, while STFT
spectrogram yields a 71.2% accuracy for the subject 1, CQT
representation gives 79.7% accuracy which corresponds to
a 8.5% relative improvement over STFT. This shows CQT
is significantly superior to the STFT. The last row of the
Table I shows the accuracy and standard deviation values
averaged over all subject and again CQT gives better values.
One interesting observation from the results given in Table
I is that although reasonable accuracy values are obtained
for the vast majority of the subjects, considerably lower
accuracy values are observed for the subjects 2 and 3 for both
feature representations. Similar observations were reported
independently in the previous studies [5], [23]. This suggests
that subjects 2 and 3 are unsuccessful in imagining movement.
Hence these two subjects make the average accuracy value
biased towards them.

In the inter-subject classification experiments approach CQT
again systematically outperforms the STFT irrespective of
the subjects (except subject 1). Interestingly, inter-subject
approach slightly outperforms the intra-subject classification
on average when CQT features are used. This shows the ef-
fectiveness of the CQT on motor imagery signal classification.
However, the average standard deviation value is considerably
lower than intra-subject approach.

Finally, we compare the results we obtain in this study with
the previous works that used the same BCI IV 2b database
in Table II. Although some of the studies used a different
experimental setup such as using only the first three sessions
rather than all five sessions [8], [14], [15] or a different
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TABLE I
CLASSIFICATION RESULTS USING STFT AND CQT FEATURES

Intra-subject Inter-subject
CQT STFT CQT STFT
Sub. | Acc. | S.D. | Acc. | S.D. | Acc. | S.D. | Acc. | S.D.
1 797 | 50 | 712 | 46 | 699 | 6.0 | 708 | 49
2 55.6 87 | 556 | 59 | 62.9 1.3 609 | 0.8
3 527 | 53 56.6 | 6.1 60.5 14 | 576 | 05
4 95.1 1.7 | 944 | 24 |1 921 | 09 | 90.1 0.6
5 903 | 2.7 852 | 47 | 82.1 1.0 | 80.9 1.1
6 80.6 | 5.1 746 | 49 | 829 1.0 | 77.1 0.7
7 77.6 | 4.5 72.5 27 | 79.6 1.3 71.9 1.0
8 80.5 | 5.2 80.1 50 | 80.5 1.1 77.9 1.0
9 794 | 5.1 790 | 45 | 857 | 0.6 | 81.3 1.0
Avg. | 76.8 | 4.8 | 744 | 45 | 713 1.6 | 743 1.3

classifier, we compare the overall accuracy values in order
to get an idea about whether the performance of the CQT can
be further improved. From the table, we observe that although
the classifiers and the experimental setups are different, CQT
outperforms the results reported in some studies. This indicates
that the performance of the proposed CQT method can be
further improved by using a different model such as RBM
and using only first three sessions as in [8].

TABLE 11
COMPARISON OF RECENT STUDIES EVALUATED ON BCI IV 2B
Study Feature Classifier | Avg. Acc.
[8] FFT RBM 84.0
[10] FB-CSP | GRU-RNN 82.75
[12] STFT CNN 73.81
[13] STFT Caps.Net 73.81
[14] STFT CNN-VAE 78,2
[15] STFT CNN-SAE 77.6
This study STFT CNN 74.4
This study CQT CNN 76.8

V. CONCLUSIONS

In this study, we proposed to use CQT as a TF feature
extraction method instead of STFT for motor imagery signal
classification. The motivation behind using CQT features
instead of STFT features was lower frequency components
(alpha and beta waves) of EEG signals are more discrimina-
tive than higher frequency bands, and CQT provides higher
frequency resolution in low-frequency bands [2]. Experiments
conducted on BCI IV 2b dataset using CNN classifier showed
that CQT representation systematically outperforms the tradi-
tional STFT features. It was found that although inter-subject
approach using CQT features slightly increases the average
classification accuracy in comparison to intra-subject method,
the average standard deviation value is considerably lower
than the intra-subject approach. This reveals the generalization
capability of the CQT features. We showed that CQT achieves
comparable performance with the previous studies. Future
studies using more powerful classifiers such as RBM and RNN
can further improve the performance of the CQT features.
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