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Abstract—Malignancy in women’s breast is known to be the
second most common form of cancer. Early detection can help
diagnose the disease effectively, but it continues to grow manifolds
due to reasons unknown. Therefore, to aid radiologists in the
effective treatment of breast cancer, an end-to-end deep learning-
based architecture for ROI-based breast mass segmentation is
proposed. The architecture involving Residual connections and
Group convolution in U-Net (RGU-Net), contains encoder and
decoder blocks with different resolutions and feature sizes. The
architecture captures multi-level features from the encoder-
decoder architecture using the residual connections and group
convolution. Moreover, to improve the field-of-view of the filters,
atrous convolutions are added. Later, for better visualization,
the predicted masks are labelled (structured learning) using a
conditional random field (CRF) to analyse the mass boundaries
explicitly. A publicly available INBreast dataset is used to validate
the method, which is augmented to produce robust results.
The experimental results produced from the proposed approach
outperformed the conventional mass segmentation algorithms,
demonstrating its effectiveness.

Index Terms—Breast Mass, Feature processing, Semantic Seg-
mentation, Residual Mapping, Group Convolution, Image label-
ing

I. INTRODUCTION

The global trend in breast cancer cases and related deaths
has significantly increased in recent times. As per the statistics,
1, 762, 450 new cancer cases are diagnosed in the United
States [1] with future estimation of 62, 930 new cases of breast
cancer and 95, 830 new cases of skin cancer in females. This
has made it a major public health concern with high morbidity
and mortality rates [2]. At the same time, if this is diagnosed
in early stages, it can be cured effectively. Among all types
of breast anomalies, breast mass segmentation is the most
common but an encumbered form of segmentation. It involves
extreme care due to the irregular and spiculated shape of
masses, heterogeneously distributed in the background. The
more sporadic the shape of a mass, the more it becomes
sure to have a malignant lesion [3]. Many works on the
lesion segmentation and classification have been performed
to aid experts in the adjoining field [3]–[6]. Ronneberger et
al. introduced the first of its kind, a segmentation network, U-

Net, which helps in automatically segmenting the images (of
variable size) and attained reasonable results for variable cell
structures [7]. Reviews on the biomedical 2D and 3D image
segmentation have been performed by many researchers [8],
[9]. A Work by Yang et al. [10] on medical image seg-
mentation utilized the GAN structures and segmented (3D)
computed tomography (CT) liver images. A work on MRI
head and neck tumors using modified U-Net by Zhao et al.
uses dilated convolution to extract multi-level features from
the acquired dataset [11]. DeepLab [12], a work by Liang-
Chieh et al. investigated PASCAL VOC-2012 dataset using
atrous convolutions, atrous spatial pyramid pooling (ASPP)
and DCNNs with probabilistic graphical models to efficiently
predict object boundaries. Another work by Rouhi et al. for
breast tumour segmentation and classification is introduced,
incorporating Artificial Neural Network (ANN) and Cellular
Neural Network (CeNN) [13].

We propose an intuitive way of semantic mass segmentation
from ROI-based breast mass images to continue the techno-
logical advancements for mass segmentation. The proposed
model, RGU-Net, incorporates the following advantages: (a)
incorporating recurrent layer-like path for feature re-use and
combination (residual connections), (b) incorporating more
features from the encoder layers using feature projection
capability of group convolution layer, (c) feature preservation
with the involvement of convolution operation with stride 2
for down-sampling, and (d) applying CRF for image labeling
(structured learning).

II. METHODOLOGY

A. Network architecture

In Figure 1, a schematic representation of the proposed
model, RGU-Net, is presented. The figure’s left part is the
compression (encoder) path where the image features are
extracted. In contrast, the right path depicting the expansion
(decoder) path decompressing the features until the original
size of the image is obtained.

The Encoder: The left part of the network contains different
convolution blocks (conv blocks) that operate at different
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resolutions. Each block includes two sub-blocks of convolution
layers followed by Batch Normalization (BN) and a rectified
linear unit (ReLU) layer. Each sub-block in a block is con-
nected through a group convolution layer to extract spatial-
dimension features. Unlike the approach used in [7], residual
mappings are also incorporated in every block. Every stage’s
input is skipped and added (element-wise addition) with the
output of the last ReLU layer of that block.

Fig. 1. Illustration of feature re-use and combination ability of the residual
connection and group convolution in the proposed framework.

• Convolution layers in each sub-block have the kernel size
of 3× 3. The group convolution in the form of channel-
wise separable convolution with filter size 7 × 7 and 1
filter per group of channels is used. To enhance feature
extraction and extract minute details, residual identity
connections with 1 × 1 convolution operation are added
(Figure 2 (right)) in each block.

y = F (x,Wi) + x (1)

In equation 1, Wi represent a set of i weight matrices (W1

in the example) occurring in the layers of the residual
(skipped) layers. The “identity shortcuts” are referring
to performing the element-wise addition of x (input to
that corresponding block) with the output of the residual
connections.

• In the added residual identity connections, the input and
the output number of channels are the same. Identity
connections between the sub-blocks of a block blend the
features across channels and allow the networks to have
more depth and avoid degradation.

• For preserving the inter-block features, the max-pool
operation is replaced by a convolution operation with a
kernel of 4 × 4 and a stride of 2 (conv-pool). As every
subsequent layer extracts features by considering only the

Fig. 2. Two types of convolution blocks, basic convolution block (left), and
the proposed RGU-Net (right).

2×2 image patches, the resulting feature maps are halved.
This strategy of applying stride 2 in convolution layer
works similar to the pooling layers that helps preserve
some more image features.

The Deepest part: Down-sampling operations in the left
part of the network continuously reduce the size of the
input signals and increase the receptive field of the network.
Therefore, to allow wider field-of-view and extraction of
context semantic information, two atrous convolution layers
(as in [11]) with kernel size 3 × 3 and a dilation factor
of 2 and 4, respectively are added. They visibly enhance
the segmentation of images by precisely locating the contour
boundaries.

The Decoder: The right path of the network extends
the spatial support to the low-level features with the high-
resolution localization features and combines them to output
a 2-channel segmentation map.

• Similar to the encoder, group convolution layer in the
form of channel-wise separable convolution is applied in
every convolution block with kernel size 7 × 7 and 1
filter per group of channels. A de-convolution operation
is applied after every convolution block to increase the
size of the inputs.

• Contextual information from the left path is concatenated
with the high-resolution feature information of the right
path in the network. They are as depicted in the form
of horizontal skip connections in the network in Fig-
ure 1. They allow for the concatenation of the contextual
features extracted from the compression path with the
localization features of the upsampling path to improve
the quality of the final segmentation.

• Lastly, a 1 × 1 convolution is applied to produce output
feature maps of the same size as that of the input.
Then they are converted to probabilities for pixel-wise

1312



Fig. 3. Ablation studies on the proposed model (on epoch 65), where
(a) original image, (b) binary labels (given), (c) prediction mask using
ADAM optimizer, (d) semantic prediction mask using ADAM optimizer, (e)
prediction mask using RMSPROP optimizer, (f) semantic prediction mask
using RMSPROP, (g) prediction mask using SGDM optimizer, (h) semantic
prediction mask using SGDM optimizer.

TABLE I
INTROSPECTION OF THE PROPOSED MODEL ON DIFFERENT OPTIMIZERS

TO EXAMINE THE ROBUSTNESS OF THE APPROACH USED. ADAM: USING
OPTIMIZER ADAM ON RGU-NET, RMSPROP: USING OPTIMIZER
RMSPROP ON RGU-NET, SGDM: USING OPTIMIZER SGDM ON

RGU-NET.

Epochs Optimizer
Jac

(in %)

Acc

(in %)

Sen

(in %)

Spe

(in %)

Precision

(in %)

ADAM 86.3 89.4 91.3 84.1 94

65 RMSPROP 85.3 88.6 91.6 81.1 92.6

SGDM 79.4 83.5 88.1 71.8 88.9

ADAM 86 89.1 91.5 82.7 93.4

75 RMSPROP 85 88.3 91.1 81 92.6

SGDM 77.2 82.1 89.4 66.7 84.9

ADAM 85.1 88.5 91.6 80.6 92.4

85 RMSPROP 85.7 89.1 93.6 79.1 91

SGDM 75.7 80.8 88.5 64.6 83.9

classification into foreground and background regions
with 0 reserved for background and 1 for the foreground
(mass), by applying softmax activations.

B. Conditional Random Field (CRF) for prediction labeling

Segmentation map labeling is a critical phenomenon as it
requires adequate knowledge about the mass boundaries in
the image. Correct labeling can provide the right picture,
which later can be used for obtaining accuracy levels. One
such method of labeling, CRF, is used in this study. It is a
structured form of learning which is well suited for segmen-
tation tasks [14]. CRF architecture incorporates hierarchical
connectivity where an output function y, as y = (y1, ..., yP ),
dependent on input sequence x, is defined as F (y, x). The
prediction for all the output variables are therefore calculated

using f(x) = argmaxy F (y, x). Typically, the proper factor-
ization of F (y, x) with respect to multivariate output y leads
to a graphical model for which argmax can be maximized and
is calculated using inference methods efficiently. In this work,
CRF [15] is therefore used as a post-processing techniques for
correctly annotating the segmentation maps produced from the
proposed model. It uses pairwise edge potentials defined using
the linear combination of Gaussian and bilateral kernels. The
first kernel is the appearance kernel which ensures that the
adjacent pixels with similar colour should be placed in one
class. In contrast, bilateral kernel fills the place for inference
on the RGB pixel values of the image. For this work, the
default kernel value is used.

III. EXPERIMENTS AND RESULTS

A. Dataset and augmentation

The proposed model is validated on a publicly available
mass segmentation dataset: INBreast dataset [16]. It is a
mammographic mass analysis dataset containing high-quality
mammogram images and provides accurate and precise lesion
contours. The dataset includes 116 images, which in itself
have 58 images reserved for training and rest 58 for testing.
Similar data split is used in the comparison process. We further
augment the dataset for effective training. Augmentations
of horizontal flipping, vertical flipping, and horizontal and
vertical flipping are applied. This makes the dataset 4 times of
the original dataset. The images’ size is changed from 40×40
to 48 × 48 to fit to the model specification and effectively
extract the required features.

B. Implementation and Training

The segmentation network contains repeated application
of encoder and decoder blocks in the downsampling and
upsampling paths which are trained on 65 epochs for effective
training. The experiments on the augmented image dataset are
conducted on a workstation with Intel® Xeon(R) Gold 5120
CPU @ 2.20GHz×56 with 93.1 GB RAM on Ubuntu 18.04.2
LTS operating system with NVIDIA Quadro P5000 with 16GB
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Fig. 4. Comparison of the proposed approach with itself for accuracy and
loss values on the application of ADAM, RMSprop and SGDM optimizers
on the proposed framework (till 100 iterations).
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Fig. 5. Visualization of the segmentation results produced using CE-Net, U-Net and the proposed approach, RGU-Net. Blue region: are the semantic
segmentation results obtained from the RGU-Net and Red region: is the CRF labeling on the produced binary segmentation results in row 7.

Graphics. The programming language of MATLAB R2019a is
used. Hyper-parameter values are set for the implementation
of the proposed model framework. For optimization, adaptive
moment estimation (ADAM) [17] is used with cross-entropy
loss at the pixel-classification layer with a learning rate of
1e − 3. After performing the ablation study with the model,
the batch size is set to 16. A dropout of 0.5 is applied at the
end of the encoder path and the start of the decoder path.

C. Results and Discussion

To better understand the proposed model, we have used
Jaccard index (Jac), dice co-efficient (Dice), pixel accuracy
(Acc), sensitivity (Sen), specificity (Spe), and Precision as the
performance measures.

1) Ablation Studies: The residual identity connection with
group convolution in the network has made the model pristine
in finding the boundaries of the lesion. Ablation experiments
are therefore performed on the proposed framework using
the augmented BUS image dataset. Experimental results on
the proposed model on the use of different optimizers with
different epochs are tested and are tabulated in Table I. To
further display the segmentation efficiency, Figure 3 shows
the visual results for the ablation experiments. Figure 3 (b)
displays the ground truth of the original input image of
Figure 3 (a) with Figure 3 (c) and (d) depicting the predicted
segmentation mask and their semantic segmentation masks
by using ADAM optimizer. Similarly, Figure 3 (e) and (f)
depicts the predicted segmentation mask and their semantic
segmentation masks by using the root mean square gradient
propagation (RMSPROP) optimizer. Figure 3 (g) and (h)

TABLE II
COMPARISON OF PROPOSED METHOD WITH STATE-OF-THE-ART

METHODOLOGIES.

Method Dice (in %)
DeepLab [12] 67.7
Deep Structure Learning [18] 88
FCN [19] 89.4
Structure Learning + CNN [20] 90
CE-Net [21] 91
Multi-FCN-CRF with
Adversarial Training [19]

90.7

U-Net 92
RGU-Net (with SGDM) 88.5
RGU-Net (with RMSprop) 92.1
RGU-Net (with ADAM) 92.6

shows the predicted segmentation mask and their semantic
segmentation masks by using Stochastic gradient descent with
momentum (SGDM) optimizer. Every column of the figure
depicts a different input BUS image. It can be inferred that
the results produced by ADAM optimizer with the proposed
methods has outdone the other optimizers. However, the
DDSM ROI-based image dataset 1 has more irregular ROIs
when compared with the INBreast dataset. Therefore, when
the proposed model is tested on DDSM dataset, it yielded

1https://drive.google.com/a/uci.edu/file/d/0B-7-
8LLwONIZU0l2N3hXdU96Y2M/view?usp=sharing
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all round size mass boundaries which are incorrect when
compared to the given binary labels of the input images.

(i) Qualitative Analysis: Figure 4 shows the graph for
the comparison of accuracy and loss among the application
of different optimizers on the proposed approach. For better
understanding, results for first 100 iterations (till 8 epochs)
are shown which helps us to understand the performance of
RGU-Net better. It is inferred that the loss value continues to
decrease with the increasing iterations. Figure 5 manifests the
segmentation results produced by the proposed framework. As
it can be seen, the proposed method has produced better and
comparable lesion contours of the masses with the heteroge-
neous boundaries.

(ii) Comparison with the state-of-the-art methodologies:
To evaluate the segmentation performance of the proposed
model, we validated Deep structured learning [18], FCN [19],
Structure Learning + CNN [20], CE-Net [21], Multi-FCN-CRF
with Adversarial Training [19] models on the same dataset
under similar environment. DeepLab [12] results are obtained
by predicting the test results from the previously trained
DeepLab models. U-Net is the model with encoder depth 4
but without residual mapping among the convolution blocks.
RGU-Net (with RMSprop) uses RMSprop optimizer with the
proposed model. SGDM was also applied on the model, called
RGU-Net (with SGDM). The comparative results are tabulated
in Table II. It is to note that the proposed model, RGU-Net
(with ADAM), outdoes the state-of-the-art methods for the
acquired breast mass image dataset.

IV. CONCLUSION

This paper has proposed a semantic segmentation archi-
tecture, RGU-Net, for 2D BUS ROI breast mass image
dataset. Proposed framework involves the ability of feature
fusion using the advantages of group convolution and residual
mappings in the convolution layers (conv layers) placed in
the form of encoder-decoder fashion. CRF-based labeling on
the produced segmentation maps has helped to analyze the
mass boundaries accurately. Experiments on the proposed
framework demonstrate that the method can accurately locate
mass contours and perform pixel classification while retaining
the contextual information. Publicly available INBreast dataset
is used, which on introspection (ablation study) shows the
model can perform well under different training strategies.
Besides, the model is generic, which can be used for various
biomedical image segmentation tasks.
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