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Abstract—Emotion Recognition from EEG signals has long
been researched as it can assist numerous medical and rehabilita-
tive applications. However, their complex and noisy structure has
proven to be a serious barrier for traditional modeling methods.
In this paper, we employ multifractal analysis to examine the
behavior of EEG signals in terms of presence of fluctuations
and the degree of fragmentation along their major frequency
bands, for the task of emotion recognition. In order to extract
emotion-related features, we utilize two novel algorithms for EEG
analysis, based on Multiscale Fractal Dimension and Multifractal
Detrended Fluctuation Analysis. The proposed feature extraction
methods perform efficiently, surpassing some widely used base-
line features on the competitive DEAP dataset, indicating that
multifractal analysis could serve as basis for the development of
robust models for affective state recognition.

Index Terms—EEG, Multiscale Fractal Dimension, Multifrac-
tal Detrended Fluctuation Analysis, Emotion Recognition

I. INTRODUCTION

Machine Learning has made overwhelming progress in
modeling rational intelligence and the way humans perceive
and act upon their environment. In tasks such as Object
Recognition [1] and Sequence Prediction [2], supervised ma-
chine learning systems have accomplished to surpass, in many
cases, the human brain capabilities. However, there are still
many challenges in approaching emotion-driven intelligence,
although it constitutes a fundamental aspect of human’s per-
ception and decision-making processes. The reason for this is
that emotions are highly subjective, and thus really difficult to
be labeled when expressed. A large number of studies attempt
to include speech [3], [4], text [5], as well as facial expressions
[6] in building emotion recognition systems. Nevertheless,
there is a growing interest in emotion tagging through physio-
logical signals [7], since those are induced without our active
interference and thus depict more clearly the actual affective
state. Such methods have been popular in designing Human-
Computer or Brain-Computer Interfaces (BCI) that aid humans
and adapt to personalized preferences. Further, physiological
signals have been used for medical purposes, among others
for the detection of epilepsy [8] and depression [9].

Among a variety of physiological signals, special consider-
ation is given to brain data. The electroencephalogram (EEG)
is the most widely researched signal of its kind and has been
highly effective in detecting affective states. A variety of time
[10], frequency [11] and joint [12] domain features have been
extracted from EEG. Particular attention has been given to
channel connectivity features, such as mutual information [13]
and differential asymmetry [14], reporting the highest scores

Fig. 1. Experiment Pipeline: I) EEG acquisition [25] II) EEG Preprocessing
[25] III) Stationarity and Fragmentation Analysis IV) Multifractal Feature
Extraction V) Binary Classification of concatenated Features

in literature. Nowadays though, various types of deep neural
networks have exceeded the performance of traditional feature-
oriented methods [15], [16].

However, processing EEG signals and extracting useful
features remain core challenges, since EEG, like most bio-
logical signals, is chaotic, nonlinear and incorporates a large
amount of noise, both from the recording equipment and
interfering physiological processes [17]. Because of the nature
of such signals, several nonlinear fractal methods have been
proposed, one of them being the Higuchi Fractal Dimension
[18], which has been used extensively in emotion recognition
as an analysis tool [19], [20]. Yet, due to their complexity
[21], such signals do not always share the same structure
over every time scale, hence the fractal characteristics may
vary and change dynamically or accordingly to the examined
scale. For this reason, in this paper, we propose the Multiscale
Fractal Dimension [22] and Multifractal Detrended Fluctuation
Analysis [23] to examine the EEG signals and determine
emotional information buried in their fragmented structure. In
order to demonstrate the efficiency of the proposed multifractal
features, we modify the BCI workflow [24] to include our
Feature Engineering algorithms (Fig. 1), obtaining competitive
results that surpass some widely used baseline methods.

The rest of the paper is organized as follows: Sec. 2 provides
a detailed description of the multifractal algorithms used in this
study. In Sec. 3, we analyze the structure of EEG signals in
terms of stationarity and fragmentation, which are important
factors in fractal algorithms. Section 4 describes the feature
extraction methodology, whereas, in Sec. 5, we describe the
the context of our experiments and discuss their outcomes.
Finally, in Sec. 6, we conclude our analysis and propose
further directions for future work on the field.
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II. MULTIFRACTAL METHODS

In signal analysis and geometry, the Fractal Dimension D
is an index of complexity and fragmentation, comparing how
the details of a signal’s pattern change when measured at
different scales. The fractal dimension of 1D signals may
vary between 1 and 2, and the larger the D is, the larger
the amount of fragmentation of the signal. Alternatively, one
could consider the Hurst Exponent H of a signal to analyse
the global properties of its fluctuations. Given a self-similar
signal, e.g. fractional brownian motion, the fractal dimension
is derived from the Hurst exponent, through H = 2−D.

A. Multiscale Fractal Dimension

Maragos [22] developed an efficient algorithm to determine
the Multiscale Fractal Dimension (MFD) of a signal by mea-
suring the multiscale length of a curve with disks of varying
radius via morphological coverings. The cover is created using
2D morphological set dilations of the signal graph F by
multiscale versions sB = {sb : b ∈ B} of a unit-scale convex
symmetric set B, s ≥ 0 the scale:

F ⊕ sB = {z + sb ∈ R2 : z ∈ F, b ∈ B}.

Then, the cover area AB(s) = area(F ⊕sB) is computed and
the fractal dimension D is yielded by:

D = lim
s→0

log[AB(s)/s
2]

log[1/s]
.

It has been shown [22] that the above limit will not change if
we approximate AB(s) with 1D nonlinear convolutions instead
of 2D set operations, which enables its efficient calculation.
In practice, D can be estimated by a least-squares line to find
the slope of log[AB(s)] versus log(s) since

log[AB(s)] = (2−D) log(s) + constant,

assuming the power law AB(s) ≈ s2−D as s→ 0. We there-
fore compute the slope of the data over a small scale window
of w scales that move along the scale axis s {s, s+1, ..., s+w},
creating a profile of local MFDs D(s, t) at each time t
(fractogram). The local slope is now an estimate of 2 − D
and from this, the fractal dimension D can be easily derived.

B. Detrended Fluctuation Analysis

Detrended Fluctuation Analysis (DFA) [26] estimates the
Hurst exponent H in time series data x[n] of length N
by utilizing its cumulative sum y[n] =

∑N
n=1 (x[n]− µx).

This profile is divided into Ns non-overlapping windows
y[k, n], k = 1, ..., Ns of length s and for every window the
local trend r[k, n] is obtained through linear regression. We
denote yd[k, n] = y[k, n]−r[k, n] the detrended version of the
k-th profile segment. Then, the RMS value of each detrended
segment is computed and averaged across the segments:

F (s) =

√√√√ 1

Ns

Ns∑
k=1

F 2
k (s), Fk(s) =

√√√√1

s

s∑
n=1

yd[k, n]2.

The result of the above operations is a vector of s values, one
for each chosen scale. The relationship between F (s) and s is
described by the power law F (s) ∝ sH , which determines H .
Multifractal DFA (MFDFA) [23] is essentially a generalization
of DFA, where the computation of F (s) includes q moments:

Fq(s) =
q

√√√√ 1

Ns

Ns∑
k=1

F q
k (s).

As a result, a separate line is computed for every value of
the factor q, with q = 2 being the reduction to classical
DFA. MFDFA could prove especially useful in cases where
the scaling exponents and complexities are dependent on the
scale, or change dynamically, in the context of time series.

III. EEG SIGNALS

A. Dataset

We work on the competitive, but widely used DEAP Dataset
[25], including data from 32 subjects in their already prepro-
cessed form. Each subject is exposed to forty 60-seconds long
music videos as stimuli, while having their EEG recorded,
along with other physiological signals. After watching each
video, the subject was instructed to rate their induced emotion
in 5 dimensions: valence (pleasantness), arousal (excitation),
dominance, liking and familiarity to the stimulus. We solely
experiment with valence and arousal, as they form a complete
emotion space [25]. The rating ranges from 1 (weakest) to 9
(strongest). The EEG signals were recorded at a sampling rate
of 512 Hz and downsampled to 128 Hz. The 10-20 placement
system was followed, using 32 electrodes.

B. Stationarity & Hurst Exponent Estimation

Physiological signals like the EEG are widely researched as
noisy and non-stationary signals and commonly demand heavy
pre-processing. The observed structure is partly due to external
stimuli or other physiological operations and mainly indicates
the complexity and the states of neural assemblies during brain
functioning [17]. In our experiments, it is crucial to determine
the stationarity of the signals in order to correctly interpret
their fractal properties. We apply the Augmented Dickey-
Fuller (ADF) Test to a randomly sampled set of EEG signals
and, to our surprise, we derive evidence of strict stationarity.
Specifically, the examined signals appeared non-stationary
only at very low scales, up to windows of 100 samples or
0.8 seconds. The same holds when we test the signal profiles,
i.e. the cumulative sums. However, a few signals exhibit non-
stationarities at their major frequency bands. In order to find
the source of this stationarity, we reproduced the preprocessing
applied in [25] to a sample raw waveform. This included
downsampling to 128 Hz, eye-artefact removal, filtering at 4–
45Hz and averaging to the common reference channel. After
this procedure, it was found that the cause of stationarity was
the performed bandpass filtering.

Although fractal methods are used for analyzing time se-
ries that appear to have long-memory correlations and non-
stationary dynamics, they are not restricted to such. Scale-free
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Fig. 2. Sample MFD profile of a signal along with the mean and standard
deviation features extracted from its 7 sub-signals of 15 sec.

stationary processes can be viewed as fractional Gaussian
noise (fGn), while their increments typically construct non-
stationary processes in the form of fractional Brownian motion
(fBm), of the same Hurst exponent. Thus, the exponent esti-
mation is crucial in characterizing EEG signals for multifractal
analysis [27] and can be determined by monofractal DFA. If
the estimated exponent is less than H = 1, then it characterizes
a stationary process, which can be modeled as fGn with that
exponent. Otherwise, it is assumed to be produced by a non-
stationary fBm process with an exponent of H − 1.

The EEG signals of the DEAP dataset provide a very low
Hurst Exponent value that approaches 0, while their profiles
and separate bands provide an increased DFA-estimated ex-
ponent, still though below 0.2 in most cases. However, the
results alter when we examine the profiles of the filtered
bands, particularly alpha and beta, in which the exponent
estimation shows a steady increase. These values confirm the
evidence from the conducted ADF Test that EEG signals are
negatively correlated and their fluctuations are smaller in larger
time windows, which is the typical behavior of fGn processes
having Hurst exponents below 0.5.

IV. FEATURE EXTRACTION

Each 60-sec EEG segment is partitioned to its main fre-
quency bands through bandpass filtering with a 10th order
Butterworth filter. We include alpha (8-13 Hz), beta (14-29
Hz), and gamma (30-45 Hz) rhythms, as well as raw signals
in our analysis, since those have been acknowledged [28] as
the most emotion-sensitive. We select 12 left (Fp1, AF3, F7,
F3, FC5, FC1, T7, C3, CP5, CP1, P3, P7) and 12 right (Fp2,
AF4, F4, F8, FC2, FC6, C4, T8, CP2, CP6, P4, P8) channels
that have shown competitive performance, particularly when
their asymmetrical relation is examined [28].

A. Baseline Features

A set of widely used baseline features is extracted for
comparative reasons and to assess the combined efficiency
of the proposed feature set. These features are the Power
Spectral Density (PSD) and the Higuchi Fractal Dimension
(HFD) [18]. PSD is computed across the entire signals through
the Welch method, resulting in 64 features per signal. The
Higuchi Fractal Dimension is extracted using PyEEG [29]
and produces a scalar feature. To derive a feature vector here,

Fig. 3. MFDFA on an EEG: depicting 16 linear-like graphs for Fq(s)

we first split each signal into windows of 15 seconds (1920
samples) with 50% overlap and then the HFD is determined
for each one of the 7 windows, resulting in a 7D vector.

B. MFD Features

Since MFD is mainly used for short-time analysis [30],
we again split each signal into 15 sec. windows with 50%
overlap. The proposed feature set includes 30 linearly sampled
features extracted out of each window’s MFD. The respec-
tive features of each window are then summarized using 3
statistical metrics: mean, median and standard deviation. In
this way, we get a final 90D feature vector incorporating
the signal’s temporal variance. The signals are analyzed at
discrete scales of s = 1, ..., 274 samples, thus the maximum
scale is at s = 1/7 of the signals’ length. The fractogram
of a sample signal along with the variance of its 7 windows
are shown in Fig. 2. The EEG fractograms reveal a highly
fragmented structure and a high fractal dimension D > 1.5.
This finding is consistent with the low Hurst Exponent we got
from monofractal DFA.

C. MFDFA Features

We additionally acquire 30 features from processing the
last half of each EEG waveform through the computationally
expensive MFDFA. We select 10 scales ranging from 30 to
500 samples and 16 q-moment values ranging from −5 to 5.
The resulting representation is a set of 16 linear-like graphs
of 10 values, as shown in Fig 3. 16 Hurst Exponent values are
determined through linear regression, one for each moment.
The mass exponent t is then derived through t(q) = qH(q)−1.
A monofractal signal with constant H would produce a linear
graph, the EEG instead produces a curve that we utilize to
produce the signal’s multifractal spectrum D:

D(q) = q′h(q)− t(q′), h(qn) =
t(qn)− t(qn−1)
qn − qn−1

,

where n = 1, ..., 15, q′ excludes the largest moment value,
and h(q) is the singularity exponent. The resulting curve,
determined by 15 h(q) and 15 D(q) values, represents the
MFDFA feature set.

V. EXPERIMENTAL EVALUATION

Experimental Protocol: We evaluate the features extracted
from the multifractal analysis on the emotion recognition task.
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TABLE I
SUBJECT DEPENDENT TASK ACCURACY IN THE FORM: VALENCE — AROUSAL

Features Channels Raw Signal Alpha Band Beta Band Gamma Band Combined
PSD 0.642 — 0.652 0.598 — 0.645 0.629 — 0.639 0.635 — 0.620 0.631 — 0.648
HFD Front 0.615 — 0.638 0.605 — 0.655 0.591 — 0.643 0.601 — 0.634 0.638 — 0.645
MFD Left 0.620 — 0.661 0.626 — 0.669 0.591 — 0.653 0.594 — 0.636 0.612 — 0.661
MFDFA 0.577 — 0.662 0.571 — 0.643 0.577 — 0.649 0.592 — 0.651 0.586 — 0.658
PSD 0.627 — 0.644 0.616 — 0.645 0.637 — 0.641 0.623 — 0.627 0.623 — 0.646
HFD Front 0.606 — 0.644 0.604 — 0.655 0.595 — 0.633 0.572 — 0.627 0.623 — 0.644
MFD Right 0.607 — 0.655 0.605 — 0.652 0.566 — 0.652 0.602 — 0.641 0.597 — 0.657
MFDFA 0.587 — 0.655 0.573 — 0.641 0.603 — 0.650 0.573 — 0.620 0.586 — 0.652

TABLE II
SUBJECT INDEPENDENT TASK ACCURACY IN THE FORM: VALENCE — AROUSAL

Features Channels Raw Signal Alpha Band Beta Band Gamma Band Combined
PSD 0.554 — 0.569 0.547 — 0.564 0.549 — 0.562 0.553 — 0.570 0.546 — 0.564
HFD Front 0.541 — 0.601 0.552 — 0.588 0.541 — 0.616 0.545 — 0.584 0.585 — 0.621
MFD Left 0.553 — 0.606 0.566 — 0.631 0.545 — 0.618 0.554 — 0.580 0.559 — 0.615
MFDFA 0.569 — 0.630 0.546 — 0.600 0.545 — 0.598 0.532 — 0.545 0.553 — 0.608
PSD 0.553 — 0.580 0.557 — 0.560 0.558 — 0.573 0.552 — 0.579 0.555 — 0.575
HFD Front 0.525 — 0.573 0.566 — 0.582 0.544 — 0.595 0.549 — 0.567 0.571 — 0.605
MFD Right 0.552 — 0.601 0.556 — 0.605 0.547 — 0.587 0.545 — 0.588 0.560 — 0.607
MFDFA 0.555 — 0.619 0.552 — 0.580 0.549 — 0.591 0.539 — 0.584 0.544 — 0.599

The experimental protocol can be divided into two categories:
Subject Dependent, in which a classifier is trained and tested
on trials of a single participant, with the final score being the
average per-subject score, and Subject Independent, where a
classifier is trained on several participants and tested against
unseen trials. We shall mention that lower scores are typically
reported [24] for the latter, since EEG is highly subject-
sensitive, thus we anticipate such behavior also in our models.

In this work, we make use of a single classifier unifying
features from all available EEG channels. The model consists
of a Standard Scaler, that standardizes training features by
removing their mean and scaling them to unit variance, and a
Support Vector Machine (SVM) with an RBF kernel. Experi-
ments consider single labels, i.e., valence or arousal, in binary
format by setting the threshold for binarization in the median
score 5. We perform 5-fold cross-validation on stratified splits
of the available data: approximately 56.5% of all samples are
of high valence and 59% of high arousal annotations.

Comparison to Baselines: The classification results for all
features at the 2 distinct settings are summarized in Table 1
and 2. We notice the accuracy difference between subject
dependent and independent tasks, supporting the claim that
brain responses inherit mainly subjective characteristics. The
EEG PSD is shown to be efficient in the subject-dependent
setting, where the raw signal modality achieves 64.2% in
valence and 65.2% in arousal. Interestingly, these scores
significantly drop in the subject-independent setting, where
the PSD emerges as the least efficient feature set, achieving
only chance-level scores in arousal, 6% below the top recorded
accuracy of MFD. We can therefore assume that the within-
subject variability is concentrated more on separate spectral
characteristics of each participant and therefore, fractal ana-
lysis is more robust across subjects.

Multifractal methods show indeed strong performance in

TABLE III
MFD-HFD AROUSAL ACCURACY

Feat/s Exp Raw Alpha Beta Gamma Comb
Left Subject 0.663 0.670 0.657 0.637 0.656
Right Dep. 0.654 0.662 0.618 0.640 0.655
Left Subject 0.613 0.641 0.612 0.580 0.614
Right Indep. 0.604 0.610 0.591 0.582 0.615

both experiments, surpassing chance levels and the baseline
features in most cases. In contrast to spectral features that are
sensitive to valence, these features prove efficient mainly in
recognizing the arousal state, in which they achieve around
5% higher scores. At the subject-dependent experiment par-
ticularly, MFD of the alpha band and MFDFA at the raw
signal yield 66.9% and 66.2%, respectively, whereas their
highest subject-independent accuracy hits 63%. Our results are
in accordance with those reported in [31] for PSD and HFD,
while the top scores obtained by MFD and MFDFA surpass
most of the ones reported there. On the other hand, at subject-
independent classification, multifractal features perform com-
parably to those discussed at [32] for DEAP, although we
recognize the additional difficulty of eliminating all of the
trials of a tested participant from training.

Aggregated features: Multifractal features, and MFD in
particular, clearly outperform the Higuchi baseline in arousal
and perform comparably in valence, indicating that the mul-
tiscale variability of the EEG can capture latent emotional
information. Furthermore, the two kinds of fractal dimensions
provide even better scores in arousal when combined. As
shown in Table 3, in both subject dependent and independent
settings we record higher accuracy than the one we obtained
from the individual features in the ablation study, mainly when
testing raw signals or the alpha band. The differences are
significant in the subject independent setting, whereas even
the top scores obtained previously are improved. The model
can now predict arousal at 67% and 64% at subject dependent
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and independent experiments respectively.
Other than that, it seems that the selection of a single feature

type could be adequate for affective state recognition, since we
do not observe substantial improvement for the “Combined”
features, in which we measure the aggregated performance of
the three bands and the raw signal. We then compare the two
asymmetrical sets of channels, where the left hemisphere is
more efficient in terms of multifractal analysis, both in subject
dependent and independent setting, performing 2% better on
average. In order to assess the asymmetrical performance, we
also experimented on aggregated trials, the results, however,
did not meet the scores obtained individually. It is evident that
higher accuracy is acquired when we consider the difference or
quotient of those features, instead of just concatenating them.
Finally, except for MFD and HFD, aggregated sets between
the mentioned feature types do not provide a statistically
significant improvement in recognition. We shall only mention
that some valence scores including PSD features surpass some
of those we report in the ablation study.

VI. CONCLUSION

In this paper we analyzed the multiscale fractal structure of
EEG and proposed a feature extraction method utilizing two
multifractal algorithms for emotion recognition. The proposed
features perform strongly against the baselines, particularly
in the challenging subject-independent setting and in arousal
recognition, indicating that arousal is correlated with the
fragmented structure of the EEG. Further improvements are
achieved when the fractal dimension features are aggregated,
while the efficiency of the alpha frequency band is underlined
in all experiments. Our analysis showed that multifractal-
ity and the anti-correlation properties should be considered
when processing EEG signals. Further work on EEG emo-
tion analysis should consider feature extraction algorithms
for determining asymmetrical multifractal properties, whereas
an interesting direction would be the examination of the
correlation between brain signals and their stimuli.

REFERENCES

[1] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You Only
Look Once: Unified, Real-Time Object Detection,” in IEEE Conf. on
Computer Vision and Pattern Recognition (CVPR), 2016.

[2] S. S. Rangapuram, M. W. Seeger, J. Gasthaus, L. Stella, Y. Wang,
and T. Januschowski, “Deep State Space Models for Time Series
Forecasting,” in Advances in Neur. Information Processing Systems 31.

[3] M. Neumann and N. T. Vu, “Improving Speech Emotion Recognition
with Unsupervised Representation Learning on Unlabeled Speech,” in
Proc. ICASSP, 2019.

[4] S. Mirsamadi, E. Barsoum, and C. Zhang, “Automatic speech emotion
recognition using recurrent neural networks with local attention,” in
Proc. ICASSP, 2017.

[5] M. Abdul-Mageed and L. Ungar, “EmoNet: Fine-Grained Emotion
Detection with Gated Recurrent Neural Networks,” in Proc. of the
Association for Computational Linguistics (ACL), 2017.

[6] P. D. Marrero Fernandez, F. A. Guerrero Pena, T. Ing Ren, and A. Cunha,
“FERAtt: Facial Expression Recognition With Attention Net,” in Proc.
Computer Vision and Pattern Recognition (CVPR) Workshops, 2019.

[7] S. Chen, Z. Gao, and S. Wang, “Emotion recognition from peripheral
physiological signals enhanced by EEG,” in Proc. ICASSP, 2016.

[8] F. H. Lopes da Silva, “The Impact of EEG/MEG Signal Processing
and Modeling in the Diagnostic and Management of Epilepsy,” IEEE
Reviews in Biomedical Engineering, vol. 1, 2008.

[9] Y. Chen, I. Hung, M. Huang, C. Hou, and K. Cheng, “Physiological
signal analysis for patients with depression,” in Proc. Int’l Conf. on
Biomedical Engineering and Informatics, 2011.

[10] P. C. Petrantonakis and L. J. Hadjileontiadis, “Emotion Recognition
from Brain Signals Using Hybrid Adaptive Filtering and Higher Order
Crossings Analysis,” IEEE Transactions on Affective Computing, vol.
1, no. 2, 2010.

[11] X. Wang, Dan Nie, and B. Lu, “EEG-Based Emotion Recognition Using
Frequency Domain Features and Support Vector Machines,” in Proc.
Int’l Conf. on Neural Information Processing (ICONIP), 2011.

[12] M. R. Islam and M. Ahmad, “Wavelet Analysis Based Classification of
Emotion from EEG Signal,” in Proc. Int’l Conf. on Electrical, Computer
and Communication Engineering (ECCE), 2019.

[13] L. Piho and T. Tjahjadi, “A mutual information based adaptive window-
ing of informative EEG for emotion recognition,” IEEE Transactions
on Affective Computing, 2018.

[14] R. Duan, J. Zhu, and B. Lu, “Differential entropy feature for EEG-
based emotion classification,” in Proc. Int’l IEEE/EMBS Conf. on Neural
Engineering (NER), 2013.

[15] Y. Li, L. Wang, W. Zheng, Y. Zong, L. Qi, Z. Cui, T. Zhang, and
T. Song, “A Novel Bi-hemispheric Discrepancy Model for EEG Emotion
Recognition,” IEEE Trans. on Cogn. and Developmental Systems, 2020.

[16] Y. Wang, Z. Huang, B. McCane, and P. Neo, “EmotioNet: A 3-D
Convolutional Neural Network for EEG-based Emotion Recognition,”
in Proc. Int’l Joint Conf. on Neural Networks (IJCNN), 2018.

[17] J. Satheesh Kumar and P. Bhuvaneswari, “Analysis of Electroen-
cephalography (EEG) Signals and Its Categorization-A Study,” Procedia
Engineering, vol. 38.

[18] T. Higuchi, “Approach to an irregular time series on the basis of the
fractal theory,” Physica D, vol. 31(2).

[19] Y. Liu and O. Sourina, “EEG-based subject-dependent emotion recog-
nition algorithm using fractal dimension,” in Proc IEEE Int’l Conf. on
Systems, Man, and Cybernetics (SMC), 2014.

[20] G. K. P. Veeramallu, Y. Anupalli, S. k. Jilumudi, and A. Bhattacharyya,
“EEG based automatic emotion recognition using EMD and random
forest classifier,” in Proc. Int’l Conf. on Computing, Communication
and Networking Technologies (ICCCNT), 2019.

[21] Saeid Sanei and J.A. Chambers, Brain–Computer Interfacing, chapter 7,
John Wiley & Sons, Ltd.

[22] P. Maragos, “Fractal Signal Analysis Using Mathematical Morphology,”
vol. 88 of Advances in Electronics and Electron Physics, pp. 199–246.
Academic Press, 1994.

[23] J. W. Kantelhardt, S. A. Zschiegner, E. Koscielny-Bunde, S. Havlin,
A. Bunde, and H. E. Stanley, “Multifractal Detrended Fluctuation Ana-
lysis of Nonstationary Time Series,” Physica A: Statistical Mechanics
and its Applications, vol. 316, no. 1, 2002.

[24] S. M. Alarcão and M. J. Fonseca, “Emotions Recognition Using EEG
Signals: A Survey,” IEEE Transactions on Affective Computing, vol. 10,
no. 3, 2019.
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