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Abstract—Detection of anomalies in time series is still a
challenging problem. In this paper, we provide a new approach to
unsupervised detection of anomalies in time series based on the
concept of phase space reconstruction and manifolds. We propose
a rotation-insensitive metric for quantifying the similarity of
manifolds and a method that uses it for estimating the probability
of an outlier. The proposed method does not rely on any features
and can be used for signals with variable lengths. We tested
it on both synthetic signals and real fetal heart rate tracings.
The method has promising performance and can be used for
interpreting the severity of fetal asphyxia.

I. INTRODUCTION

Anomaly detection in time series has attracted attention in
many disciplines over the past decades. In a recent review, it
has been reported that in the past, much effort has been put on
various kinds of problems related to outlier detection in time
series including work with different data categories, outlier
types, and nature of tasks [1]. In practical problems, the types
of outliers can represent a couple of unexpected points in a
data stream, several rare events embedded in time series, or
an entire anomalous observation sequence. Although there are
plenty of works for detecting odd points in time sequences [1],
the detection of consecutive abnormal samples or an overall
anomalous sequence has not been explored well. However,
such problems are not uncommon in many applications.

This paper focuses on the detection of anomalies in a set of
unlabeled time series data. The intended application is improved
interpretation of cardiotocography (CTG) recordings, and in
particular fetal heart rate (FHR) tracings. CTG monitoring has
been widely used in delivery rooms for alerting physicians
of inadequate level of oxygen transported to a fetus through
the umbilical cord in the process of delivery. The traditional
approach based on inspecting FHR patterns visually is unsatis-
factory because of the high inter- and intra-variability of the
obstetricians’ decision making [2]. In the past decade, there
has been much effort to explain FHR tracings by appealing
to machine learning techniques. They include feature-based,
contraction-dependent and neural network-based approaches
[3]. Almost all of the reported methods require a set of known
“healthy” or “non-healthy” labels of recordings, which are
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usually determined according to the umbilical cord pH value
acquired after birth.

Notwithstanding the extensive studies of FHR assessment
aided by labels, experts have not reached an agreement on
the thresholds that classify the fetuses, and there is even no
settlement about the rationality of using the pH value for
deciding the labels of the fetal status. Clinical data, such as pH
values, indeed contain information, but they are all of newborns
and in principle, one might argue, they should not be used
for evaluating the fetal health during the last two hours before
delivery. In other words, labels that represent the real-time
status of fetuses do not exist. With this in mind, unsupervised
learning from FHR tracings is particularly important for fetal
monitoring. Even so, there are only a few related papers on this
subject. For example, [4] explored unsupervised clustering of
FHR by using deep Gaussian processes (GPs). In the paper, it
was shown that after five-layers of space projections, the error
of classification was reduced, and FHR tracings of unhealthy
fetuses could be separated from the normal ones. However, in
this work, the authors used only 10 recordings of the last 30
minutes of tracings.

In this paper, we develop a new method for detecting
dissimilar time series from a pool of series. The method is
different from previous works by the way how we use mapping
and clustering. A common strategy for detecting outliers is
extracting meaningful features and mapping them to a lower
dimensional space, e.g., by using principal component analysis
(see [5] for details). The method proposed in [6] requires
features and is based on measuring the deviations within or
among the cluster centroids obtained from features. Similarly,
[7] reformulated the task of outlier detection as optimization
of clustering, where entropy and dynamic warping of the time
series were used. The authors in [8], extracted representative
shapes of the normal class from datasets with inferred labels
and the anomalies were learned at the same time. In our work,
we map the time series into a Euclidean space. But instead
of extracting features or inferring labels, we reconstruct the
manifolds of time series in a 3D phase space, and design a
rotation-insensitive metric of manifold-to-manifold distances
for quantifying their similarity. Then we employ a distance-
based probability estimation of anomaly detection. First, we test
the proposed method on synthetic data and then we discuss its
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application on discovering anomalies among 85 FHR tracings.

II. BACKGROUND

A. GP-based Phase Space Reconstruction

The phase space of a dynamic system contains infinite
number of potential states forming a smooth manifold. An
attractor of a system in phase space carries its all topological
information and features. The manifold of a dynamic system in
the real world is usually hidden. In order to recover manifolds
from observed signals, Floris Takens proposed a powerful
theorem, which shows that generically the hidden manifold
can be reconstructed by a visible time series observation under
a couple of conditions [9].

Theorem II.1 (Takens’ Theorem). Let M be a compact
manifold of (integer) dimension d and suppose the generic
pairs (φ, y) satisfy
• φ : M →M is a C2-diffeomorphism of M in itself.
• y : M → R is a C2-differentiable function.

Then, the map Φ(φ,y): M → R2d+1 given by

Φ(φ,y) := [y(t), y(φ(t)), y(φ2(t)), . . . , y(φ2d(t))]

is an embedding of M in R2d+1.

The most popular generic function φ has a time-delay form
Φ = [y(t), y(t− τ), y(t− 2τ), . . . , y(t− 2dτ)], which shows
that a shadow version of the original manifold can be rebuilt
simply by using one of the time series projections and its
delays. Although Takens theoretically proves that for recovering
a d-dimensional manifold, an E = 2d+ 1-dimensional delay
embedding is sufficient, the actual values of d or E are unknown
for the desired but latent M . Moreover, the choice of time delay
τ also affects the performance of the phase space reconstruction
(PSR). The traditional strategy for determining the optimal E
and τ is by grid searching [10]. A newly proposed GP-based
method for PSR has been shown to have greater tolerance for
noise and to be more efficient for learning manifolds from
highly correlated initial delay embedding [11]. The method
also does not rely on searching for the optimal parameters for
embedding.

We pursue the idea that manifolds rebuilt by using signals
from the same dynamic system should have similar topology.
We apply the GP-based method for PSR to infer the latent
manifolds of signals and then, we cast the problem of detecting
unusual time series as one of detecting irregular manifolds.

B. Local Outlier Probabilities (LoOP)

Among the many unsupervised outlier detection techniques,
the one published in [12] is one of the most popular methods.
It produces a probability score for each object in a set based on
their local density. This method depends on a reliable distance
function between objects or a known distance matrix consisting
of all pairwise distances. The n nearest neighbors of an object
create a local scope for computing a probabilistic distance from
the object to its neighbors. A reference distance of an object is
the expectation of the probabilistic distances of its neighbors
to their neighbors. Then, an outlier factor can be generated by

Fig. 1: A schematic diagram of the proposed method.

comparing the local probabilistic distance and the reference
distance. Once all the factors are obtained, the local outlier
probabilities can be obtained through normalization.

III. PROBLEM DESCRIPTION

Since the fetuses with hypoxia are relatively rare compared
to a large number of healthy fetuses, in this paper, we focus on
the problem of anomalous time series detection that does not
rely on a labeled training dataset. Suppose we are given a time
series data set S = {s1, s2, . . . , sN} with N time series whose
time lengths may be different, i.e., si ∈ Rti , i = 1, 2, . . . , N .
Our assumption is that most of the time series come from the
same dynamic system, and we would like to detect the ones
that show dissimilar dynamic characteristics (the outliers in
our set).

IV. THE PROPOSED METHOD

In order to select the anomalous signals from a data set, the
intuitive approach is to rely on a metric of similarity. However,
when the lengths of the time series are different, especially
when the observations are not synchronous, the similarity
simply calculated based on the time-domain variability is
very challenging. A common solution is extracting meaningful
features adapted to the addressed problem and reducing the
dimensionality from the feature space to a latent space. In
this paper, we consider inferring the latent manifolds of the
dynamic systems from the signals generated by the systems.
The topology of the manifold would imply the characteristics
of the dynamic system. Therefore, we propose to first map
the 1D time series to a 3D phase space to reconstruct the
corresponding manifold. Then we use a newly defined metric
for quantifying the similarity between the manifolds. In the last
step, we estimate the probability of the observed time series
being an outlier. A visualization of the relative positions of the
data in the Euclidean space is also provided. Figure 1 shows a
flow of the proposed method.

The steps of the method are intertwined. The performance
of the previous steps affect directly the performance of the
subsequent steps. For the PSR, we use the GP-based inference
method proposed in [11] because it is within the Bayesian
framework, is more robust and is more efficient than traditional
delay embedding. It is worth pointing out that the phase spaces
reconstructed by different times of training are not necessary
the same. This is because the machine is blind to the real
latent space [13]. Specifically, the latent variable learned from
a high-dimensional observation might be a product of its real
value and a rotation matrix, which means that there may
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be an unknown rotation angle between two manifolds. For
this reason, some existing metrics for measuring manifold-to-
manifold distances do not work well in our study, for example
[14]. In this paper, we propose a new approach to quantifying
the similarity between manifolds that is not sensitive to their
rotation. The details of the metric are explained in subsection
IV-A. After computing the distance, we apply LoOP [12] to
estimate the probability that a time series is anomalous. In
subsection IV-B, we provide a position visualization of a time
series.

A. Quantifying a Manifold-to-Manifold Distance

The manifolds of all the time series in the set S are
reconstructed and stored in a set M = {M1,M2, . . . ,MN}.
Each element of the set, Mi ∈ Rti×3, i = 1, 2, . . . , N
represents a manifold which contains the 3D coordinates of the
latent states corresponding to every moment of the time series.
As discussed above, the manifolds in M do not necessarily
share the same space. Therefore, one has to carefully process
two manifolds to determine similarities between them. Again,
the latent states in a manifold are one-to-one mapping of the
samples of a time series. Thus, a manifold can be regarded as
a “trajectory” of a signal in the phase space for a period
of time. One can imagine that, if the time series coming
from the same dynamic system are observed long enough,
their corresponding trajectories in the phase space should be
close to each other, even though the observation time and/or
the observation duration are different. In other words, each
manifold consists of a subset of all latent states of a dynamic
system, and the state subsets corresponding to the homologous
signals should have a larger intersection. This prompts us to
seek a metric to quantify the similarity between manifolds by
using probability distributions. To avoid the effect of manifold
rotation, we introduce the centroid of the ith manifold, denoted
by Oi ∈ R3 and computed according to

Oi =
1

ti

ti∑
k=1

Mi(k, :), (1)

where the row vector Mi(k, :) indicates the kth latent
state of the ith manifold. As illustrated in Fig. 2, for any
manifold we can obtain a set of geometric vectors Vi =
[vi,1,vi,2, . . . ,vi,ti ]

T ∈ Rti×3 from its centroid to its samples:

vTi,k = Mi(k, :)−Oi, (2)

where k = 1, 2, . . . , ti. Thus, the set of geometric vectors
actually suggests the topology of the manifold. We denote the
magnitude of the vectors by vi = [|vi,1|, |vi,2|, . . . , |vi,ti |]T .
Suppose that Ai and Bi are any two neighboring states of the
manifold. The adjacent angle of vectors

−−−→
OiAi and

−−−→
OiBi is

θi,k = cos−1
vTi,kvi,k+1

|vi,k||vi,k+1|
, (3)

where k = 1, 2, . . . , ti − 1. We collected the angles in the
vector θi = [θi,1, θi,2, . . . , θi,ti−1]T . Similar processing can
be carried out for every manifold. Clearly, these two types of

Fig. 2: Measurements of manifold topology.

measurements are no longer affected by space rotation (Fig. 2).
Next, to compare the manifolds, the histograms of the elements
of vi and θi are computed, respectively, to approximate the
distributions of the magnitudes of vectors and their adjoining
angles. Then, the manifold-to-manifold distance is defined as

d(Mi,Mj) =
1

2

√
J(pvi

(v), pvj
(v)) +

1

2

√
J(pθi

(θ), pθj
(θ)),

(4)
where the function J(·, ·) computes the Jensen–Shannon
divergence between two distributions [15]. The pv(v) and
pθ(θ) represent the probability mass functions of v and
θ, respectively, obtained from the histograms. In the above
definition, the magnitudes of vectors are a proxy of the manifold
shape, and the adjacent angles imply the rate of changing of
the states.

B. Relative Positions in Euclidean Space

Once we have the pairwise distances between manifolds, the
distance-based unsupervised anomaly detection technique, such
as LoOP, can be applied directly. Given the distance matrix
D ∈ RN×N , we can also visually build up a relative position
relationship between the time series data in a Euclidean space,
which is popular in many application problems. Assuming that
the first time series corresponds to the origin of the coordinate,
the Gram matrix G of a set of coordinate vectors in space can
be computed element-by-element via

Gi,j =
1

2
(D2

1,j +D2
i,1 −D2

i,j) = xTi xj , (5)

where Di,j and Gi,j are the (i, j)th elements of the matrices
D and G, respectively. The symbol xi ∈ R3 denotes the
coordinates of the ith data point. Thus, we have G = XXT

where the matrix X = [x1,x2, . . . ,xN ]T ∈ RN×3 is a
collection of all the desired coordinates. Next, the matrix G
can be factorized by singular value decomposition, or

G = USUT , (6)

where S is a diagonal matrix containing the eigenvalues of G
in decreasing order. For visualization, the dimension in which
the time series data can be embedded should be less or equal
to three. Therefore, we trimmed the matrix S to S̃ ∈ R3×3

that only holds the first three rows and the first three columns
of the matrix S. Then, the position matrix is calculated by

X = US̃
1
2 . (7)

The details of the method can be found in [16].
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Fig. 3: Synthetic data and manifold reconstruction.

V. EXPERIMENTS

A. Synthetic Dataset from Lorenz System

In this section, we test our method by using a synthetic
dataset generated from the well-known Lorenz systems. This
system was developed for modeling atmospheric convection
by Edward Lorenz and received lots of attention for having
chaotic dynamics for certain parameters and initial conditions.
The Lorenz differential equations are given by

dxt/dt = λ(yt − xt) ,
dyt/dt = xt(ρ− zt)− yt ,
dzt/dt = xtyt − βzt .

(8)

Assuming that only yt can be measured from the system, we
generated 100 time series y of length L with a standard setting:
λ = 10, β = 8/3 and ρ = 28. They are regarded as normal
observations. The other five signals with the same time length
are from the systems having parameters [β, ρ] = [4, 50], [5, 45],
[3, 65], [7, 70] and [1, 20], respectively. The parameter λ keeps
the same value of 10. The five signals represent anomalies in
this experiment. We picked the initial conditions of different
observations uniformly from [0, 1]. To the signals we added i.i.d.
white Gaussian noises with variance σ2. Figure 3 compares
the original Lorenz attractors, time series observations and
reconstructed manifolds that are in the same dynamic systems
and those that are not.

The performance of the proposed method is shown in Fig.
5, where we plotted the ROC curves of anomaly detection for
L = [100, 500, 1000, 2000] and σ = [1, 2, 3, 4], respectively.
The results match our intuition in that the accuracy improves
as the observation time length increases, whereas the accuracy
decreases with the increase of the noise variance. With a longer
observation, the method has better capacity to capture more
dynamic information of the system and explore more latent
states in the phase space. As a result, a machine learning
method can differentiate anomalous time series from normal
ones more easily. The influence of the noise is mainly in the
manifold reconstruction. We can see that, with long enough
observations (L = 2000), the performance is maintained even
with large noise (σ = 4). Figure 6 shows a result of position
visualization when L = 2000 and σ = 2, where the scores next

Fig. 4: Preprocessed FHR recordings and their manifolds.

to the markers represent the probabilities of the corresponding
time series of being anomalous.

B. Open Access Intrapartum CTG database

In this section, we explore the performance of the new
method on discovering fetuses with abnormal behaviors by
processing their heart rate tracings. The dataset used in this
study was collected at the University Hospital in Brno, Czech
Republic [17]. We selected 80 healthy recordings based on the
agreement of more than half of the experts (see [2]). The five
adverse recordings are selected also under this criterion and
they have the lowest pH values (the pH distribution is shown
on the left of Fig. 8). All the FHR tracings were preprocessed
according to [18]. We used only the last 30-min recordings
(see Fig. 4).

We divided the 30-min time series into six non-overlapping
5-min segments and computed the statistics of the local outlier
probabilities of FHR from normal (denoted by 0) to abnormal
(denoted by 1) fetuses, shown in Fig. 7. This result suggests
that with time getting closer to birth, the outlier probabilities
of healthy and non-healthy fetuses have statistical separation
except for the last 5 mins (Fig. 7). In the last 5 mins, due to
intense pressure from the contractions, even the healthy babies
are no longer tolerant. However, this intolerance is even more
pronounced by unhealthy fetuses. Yet, the difference between
the two classes is less clear than in the first 25 minutes. Finally,
we showed the relative positions of the FHR tracings in Fig.
8, which correspond to the time period 10-15 mins before
delivery.

VI. CONCLUSION

In this paper, we proposed a new approach for detecting
anomalous time series in an unsupervised manner. The variable-
length time series undergo phase space reconstruction to
identify their manifolds. A rotation-insensitive metric of
distances between two manifolds was proposed. We used this
metric to detect outliers and to visually display them. This work
was tested by using both synthetic data and real-world data.
The synthetic test results show good performance for various
lengths and noise levels. When applied to FHR tracings, the
results suggest that the method is promising in revealing fetal
asphyxia during the second stage of labour.

1324



Fig. 5: ROC curves of synthetic testing. Fig. 6: A result of synthetic testing.
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Fig. 7: Statistics of FHR outlier scores.

Fig. 8: FHR information and a testing result.
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