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Abstract—Matrix factorization methods have successfully been
used for rating prediction. The interactions between users and
items are recorded in the interaction matrix. In this paper, a
neural matrix factorization method is proposed that is applied
to the interaction matrix. More specifically, the normalized
interaction matrix is given as input to the neural network in order
to extract user and item embeddings. The estimated ratings are
obtained by the inner product between the extracted user and
item embeddings. The proposed method is assessed in movie
rating prediction by employing three MovieLens datasets. It
is demonstrated that the proposed neural factorization attains
competitive performance and is less computationally demanding
against the state-of-the-art methods in movie rating prediction.

Index Terms—rating prediction, neural recommender system,
matrix factorization

I. INTRODUCTION

Nowadays, users are overloaded with a huge volume of
information that does not necessarily match their interests. To
improve user experience, many online services need to provide
personalized information to users by employing recommender
systems. For example, e-commerce businesses need to make
personal recommendations to users about their products. An-
other example is movie recommendation that has attracted the
interest of both academia and industry.

The underlying idea of a personalized recommender system
is to model users’ preferences on items based on their past
activity (e.g., submitted ratings). This is known as Collab-
orative Filtering (CF). Matrix Factorization (MF) [1]–[3] is
exploited into the most popular CF algorithms. MF models
a user-item relation by projecting user and item vectors onto
a latent space and computing their inner product. Over the
last years, the research effort has led to efficient MF methods.
A learning MF method was proposed in [4], coined as Funk
Singular Value Decomposition (SVD). Funk SVD employs
stochastic gradient descent optimization to learn user and
item representations in the latent space. Unlike Funk SVD,
SVD++ [5] employed user and item biases in order to learn
the variation of rating values (i.e., independent of user-item
interactions). An enhanced SVD++ method was developed
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in [5], which handles efficiently new users. It is known as
Asymmetric SVD. Recently, many deep learning approaches
to MF have been proposed, achieving competitive performance
[6]–[8]. A neural autoregressive approach to collaborative
filtering was proposed in [9]. It was coined as CF-NADE.
It is based on Neural Autoregressive Distribution Estimator
(NADE) [10] and Restricted Boltzmann Machine based Col-
laborative Filtering (RBM-CF) [11]. NADE is a distribution
estimator applied to high dimensional binary vectors. RBM-
CF is a generative graph model that consists of two layers. It
aims to model the distributions of tabular data by generalizing
Restricted Boltzmann Machines (RBMs). Inspired by RBM-
CF, CF-NADE adapts NADE to CF tasks.

MF can be treated as a graph learning problem. In 2016,
Kipf introduced Graph Convolutional Networks (GCN) [12].
One year later, a new approach of MF based on GCN was
proposed in [13], which is known as Graph Convolutional
Matrix Completion (GC-MC). GC-MC turns MF into a graph
learning problem by employing a bipartite graph that consists
of user-item interactions. Variational Graph Auto-Encoders
were proposed in order to predict the links between user and
items [14]. The Separable Recurrent Multi-graph CNN (sR-
MGCNN) that comprises graph convolutions and a Recurrent
Neural Network, was proposed in [15]. sRMGCNN utilized 2
graphs to learn user/item embeddings, which are employed to
reconstruct a user-item matrix.

In this paper, we propose a novel method, coined as Neural
Interaction Matrix Factorization (NIMF). Interaction is defined
as a user’s activity related to an item (e.g., a user rates a movie,
a customer likes a restaurant). The underlying idea of NIMF
is to extract user and item neural representations, known as
embeddings, in a latent space using the recorded interactions.
NIMF utilizes the interaction matrix to learn the users/items
embeddings, while [15] employs 2 different graphs (1 for users
and 1 for items) for the same purpose. This is the major novelty
introduced, which reduces significantly the time requirements
of the proposed method against the top performing state-of-
the-art ones. The inner product of the neural embeddings
yields the estimated ratings. NIMF is tested on movie rating
prediction. The target matrix comprises the estimated ratings.
NIFM is tested on 3 movie datasets, namely MovieLens-100k,
MovieLens-1m, MovieLens-10m, which consist of 100, 000,
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1, 000, 000, and 10, 000, 000 ratings, respectively [16]. The
objective figure of merit is the Root Mean Square Error
(RMSE) between the estimated ratings and the corresponding
actual (real) ratings. NIMF demonstrates competitive per-
formance against state-of-the-art methods. Moreover, NIMF
possesses less training parameters than its competitors, being
less computationally demanding. The proposed method and
classic MF methods share the same application fields, such as
recommender systems, text mining, bioinformatics, etc.

The remainder of the paper is as follows. Section II de-
scribes briefly MF. Section III analyzes the proposed NIMF
method. Section IV presents the experimental results. Sec-
tion V concludes the paper and indicates future research
directions.

II. MATRIX FACTORIZATION
MF techniques aim to project users and items in a latent

space. Given a set of users, U = {u1, u2, · · · , u|U |}, and a set
of items, I = {i1, i2, · · · , i|I|}, the rating matrix is defined as
R = [Rui]. Whenever user u has rated item i, Rui is non-
zero. Otherwise, Rui = 0. Let K be the number of latent
factors. Many or few latent factors can lead to overfitting
or underfitting, respectively. The user and item matrices in
latent space are denoted as U ∈ R|U |×K and I ∈ R|I|×K ,
respectively. The jth row of matrix U represents user uj in
the latent space and the `th row of matrix I represents item i`
in the same latent space. The estimated rating matrix can be
obtained by the factorization

R̂ = UI>. (1)

Accordingly, U and I have to be learned, so that a proper loss
function is minimized. Several loss functions are employed in
different MF methods. Here, the loss function is given by

L =
‖R̂−R‖F√
|U ||I|

+ λ(‖U‖2F + ‖I‖2F ), (2)

where ‖ · ‖F denotes the Frobenius norm of the matrix
argument and λ is a regularization parameter. The first term
in Eq. (2) is the RMSE. Minimizing RMSE means that the
estimated ratings become similar to real (actual) ratings. The
second term in Eq. (2) introduces regularization, excluding
extreme values in matrices U and I and prevents overfitting.

III. NEURAL INTERACTION MATRIX
FACTORIZATION

Interactions between users and items contain crucial infor-
mation about users’ preferences. For example, let interactions
be the users’ ratings to movies. A user who rates only a
specific movie genre implies that he or she prefers this genre.
This kind of information is captured by the interaction matrix
A ∈ R|U |×|I| having elements:

Aui =

{
1, if Rui 6= 0

0, otherwise.
(3)

The interaction matrix A is also known as the bi-adjacency of
the bipartite graph with parts U and I . The basic idea of NIMF

Fig. 1. The architecture of the proposed method NIMF.

is to learn matrices U, I utilizing the interactions between
users and items. Initially, matrix A has to be normalized. Let
us define the diagonal matrix Dc ∈ R|I|×|I| with elements:

δ(i) =
∑
u∈U

Aui, i ∈ I (4)

and the diagonal matrix Dr ∈ R|U |×|U | with elements:

δ(u) =
∑
i∈I

Aui, u ∈ U. (5)

Next, the normalized interaction matrix Ã ∈ R|U |×|I| is given
by:

Ã = D−1/2r AD−1/2c . (6)

Inspired by the GCN layer [12], that performs a multiplication
between an adjacency matrix and a weight matrix, here, the
adjacency matrix is replaced by the interaction matrix. Let
Bu = 1|U | b

> ∈ R|U |×K denote the bias matrix, where 1|U |
is a vector of |U | ones and b ∈ RK×1 is the typical bias
vector. Accordingly, the output of layer U ∈ R|U |×K is

U = ÃWu +Bu = ÃWu + 1|U | b
>, (7)

where Wu ∈ R|I|×K is the user weight matrix. The training
parameters are the elements of Wu. Similarly, matrix I ∈
R|I|×K is obtained by

I = Ã>Wi +Bi = Ã>Wi + 1|I| b
>, (8)

where and Wi ∈ R|U |×K is the item weight matrix. It can
be shown that Eqs. (7) and (8) result by GCN [12] employing
the adjacency matrix of the bipartite graph. NIMF network is
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defined as the factorization between user embeddings σ(U)
and item embeddings σ(I), i.e.,

R̂ = f(Ã) = σ(U)σ(I)>, (9)

where σ is the activation function. Clearly, the elements of
R̂ are inner products of user and item embeddings. The loss
function is similar to Eq. (2). The only difference is that the
regularization is applied to matrices Wu and Wi instead of
U and I. That is,

LNIMF =
‖R̂−R‖F√
|U ||I|

+ λ(‖Wu‖2F + ‖Wi‖2F ). (10)

The structure of NIMF is depicted in Fig. 1. Input is A (and
A>). There are two layers. The first layer passes the output of
layer U through RELU, yielding σ(U). Similarly, the second
layer passes the output of layer I through RELU, yielding
σ(I). Network weights Wu and Wi are jointly optimized
by minimizing Eq. (10) with stochastic gradient techniques.
A neural network architecture mapping the row and column
vectors of the interaction matrix into a latent space employing
multiple convolutions has been proposed in [?]. Although the
latter architecture shares some similarity with that depicted in
Fig. 1, the proposed architecture is fundamentally different,
since it is inspired by GCNs. The computational complexity
of NIMF is calculated as O(|U ||I|K). NIMF is summarized in
Alg. 1. The interactions associated to test or validation ratings,
are excluded from the interaction matrix A. Afterwards, A is
given as input to Alg. 1.

Algorithm 1 Proposed NIMF method.
Inputs: Interaction matrix A (consisting of the training in-
teractions), regularization parameter λ, and number of epochs
ep.
Output: Estimated rating matrix R̂.

1 Compute normalized interaction matrix, Ã, using Eq. (6).
2 for i = 1, 2, . . . , ep do

Compute R̂ using Eq. (9).
Compute loss, LNIMF, using Eq. (10).
Back propagate LNIMF.
Update weights Wu, Wi.

end for
3 Compute the final R̂ using Eq. (9).

IV. EXPERIMENTS
NIMF is evaluated on 3 real-world benchmark datasets:

MovieLens 100k, MovieLens 1m, MovieLens 10m. The
MovieLens datasets consist of users’ ratings for movies. The
prediction error is measured by the RMSE between predicted
rating values and (actual) real ratings values. The activation
function σ is chosen to be the non-linear RELU function:

σ(x) =

{
x, x > 0

0, x ≤ 0
(11)

that demonstrates better performance than other activation
functions.

All experiments are conducted using a GPU. More specif-
ically, the machine where the experiments were conducted
consists of a 64-bit operating system with an Intel Core i9-
7900X CPU at 3.3 GHz, Nvidia RTX-2080ti GPU, and 128
GB RAM.

A. Dataset Description

MovieLens 100k dataset contains 100, 000 ratings for 1, 682
movies by 943 anonymous users who rated at least 20 movies.
Rating values are 1 to 5 stars with 1-star increments. Movie-
Lens 1m dataset consists of 1, 000, 209 ratings for 3, 706
movies by 6, 040 anonymous users. Each user has rated at
least 20 movies. The rating scale is identical to MovieLens
100k. MovieLens 10m dataset consists of 10, 000, 054 ratings
for 10, 681 movies by 69, 878 anonymous users. All users are
chosen to have at least 20 movie ratings each. MovieLens 10m
rating values are 1 to 5 stars with 0.5-star increments (i.e., the
possible rating values are 10).

The efficiency of NIMF is critically affected by the number
of latent factors. Using few latent factors can make the model
inefficient, as it can not learn complex functions. On the other
hand, using many latent factors can lead to overfitting. The
breaking points of latent factors for MovieLens datasets are
depicted in Fig. 2. A similar trend in the variation of RMSE
with respect to K is observed in both the validation and test
set.
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Fig. 2. Test and validation RMSE for different numbers of latent factors K
on three MovieLens datasets.

B. Experiments on MovieLens datasets

MovieLens 100k dataset is split into the official training and
test sets with a proportion 80%/20% of the ratings [16] in order
to make a fair comparison with other methods. Afterwards, 5%
of training set is used as a validation set. Therefore, training,
test, and validation sets contain 76, 000, 20, 000, and 4, 000
ratings, respectively. Adaptive moment estimation (Adam)
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TABLE I
TEST RMSE FOR SEVERAL METHODS ON MOVIELENS 100K DATASET.

THE DATASET IS SPLIT INTO TRAINING AND TEST SETS WITH PROPORTION
80%/20% OF THE RATINGS.

Method MovieLens 100k
MC [18] 0.973
IMC [19], [20] 1.653
GMC [21] 0.996
GRALS [22] 0.945
sRMGCNN [15] 0.929
GC-MC [13] 0.905
NIMF (ours) 0.894

optimizer [17] with a learning rate of 0.01 is employed. Several
numbers of latent factors are tested as shown at Fig. 2. The
smallest RMSE is obtained for K = 150. For this value of
K, model training parameters are approximately 143,000. The
regularization term in (10) gives preference to weight matrices
with smaller squared Frobenius norm to avoid overfitting. The
elements of the weight matrices are equal to (|U | + |I|)K.
Considering that, the regularization parameter is set as

λ =
1

(|U |+ |I|)K
, (12)

which is found to offer a balance between the 2 terms in
Eq. (10), which avoids both overfitting and underfitting for
datasets with different size and a variety of K values. NIMF is
compared against the following methods tested on MovieLens
100k dataset: Exact Matrix Completion (MC) [18], Inductive
Matrix Completion (IMC) [19], [20], Matrix Completion on
Graphs (GMC) [21], Graph Regularized Alternating Least
Squares (GRALS) [22], sRMGCNN [15], and GC-MC [13].
The test RMSE using NIMF is 0.894. NIMF outperforms
other methods, as can be seen in Table I. Although RMSE
differences between GC-MC and NIMF are not statistically
significant, NIMF is less computationally demanding. The
training time of NIMF is 0.006 sec per epoch and test time is
0.002 sec, employing GPU. GC-MC official code can not be
executed by employing the recent versions of software (i.e.,
CUDA 10) and hardware (i.e., Nvidia RTX-2080ti). Thus,
experiments are conducted using CPU for both NIMF and GC-
MC methods to make a fair comparison w.r.t. execution times.
NIMF requires clearly less time than GC-MC to be executed,
as shown in Table II.

TABLE II
CPU TIME REQUIREMENTS COMPARISON BETWEEN GC-MC AND NIMF

METHODS.

Method time per epoch (sec)
MovieLens-100k MovieLens-1m MovieLens-10m
train test train test train test

GC-MC [13] 0.12 0.06 2.8 0.55 2137.5 5.24
NIMF (ours) 0.04 0.01 0.45 0.18 10.9 3.92

The training set of MovieLens 1m dataset comprises 90%
of the ratings and the test set is created by the remaining
10% of the ratings. Model parameters are optimized over 5%
of training set, which is used as validation set. Therefore,

TABLE III
TEST RMSE FOR SEVERAL METHODS ON MOVIELENS 1M AND

MOVIELENS 10M DATASETS. DATASETS ARE SPLIT INTO TRAINING AND
TEST SETS WITH PROPORTION 90%/10% OF THE RATINGS.

Method MovieLens 1m MovieLens 10m
PMF [23] 0.883 -
RBM [11] 0.854 0.825
BiasMF [24] 0.845 0.803
NNMF [25] 0.843 -
LLORMA [26] 0.833 0.782
I-AutoRec [27] 0.831 0.782
GC-MC [13] 0.832 0.777
CF-NADE [9] 0.829 0.771
NIMF (ours) 0.829 0.781

training, test, and validation sets contain 855, 178, 100, 021,
and 45, 010 ratings, respectively. Adam optimizer’s learning
rate is set equal to 0.01. The optimal number of latent
factors is chosen to be K = 600, as can be seen in Fig. 2.
Therefore, model training parameters amount to 5.85 million.
The regularization parameter is set as in Eq. (12).

NIMF is compared against Probabilistic Matrix Completion
(PMF) [23], RBM [11], Bias involved Matrix Factorization
(BiasMF) [24], Neural Network Matrix Factorization (NNMF)
[25], Local Low-Rank Matrix Approximation (LLORMA)
[26], Item-based AutoRec (I-AutoRec) [27], GC-MC [13],
and CF-NADE [9]. NIMF prediction error (i.e., RMSE=0.829)
equals that of CF-NADE [9], as can be seen in Table III. NIMF
possesses much less training parameters compared to the 30.48
million training parameters of CF-NADE. As a result, NIMF
exhibits reduced computational complexity (i.e., 0.065 sec
training time per epoch and test time equal to 0.024 sec), while
CF-NADE needs 3.11 sec training time per epoch and test time
equal to 0.68 sec, as shown in Table IV. NIMF attains a state-
of-the-art prediction error, while its computational demands
are drastically reduced.

TABLE IV
GPU TIME REQUIREMENTS COMPARISON BETWEEN CF-NADE AND

NIMF METHODS.

Method time per epoch (sec)
MovieLens-1m MovieLens-10m
train test train test

CF-NADE [9] 3.11 0.68 135.62 32.73
NIMF (ours) 0.065 0.024 0.94 0.4

MovieLens 10m dataset is split similarly to MovieLens
1m (i.e., train and test sets with proportion 90%/10% of
the ratings with 5% of the training set used as validation
set). Therefore, training, test, and validation sets consist of
8, 550, 045, 1, 000, 006, and 450, 003 ratings, respectively.
Adam optimizer’s learning rate is set at 0.01. Several num-
bers of latent factors are tested, as shown in Fig. 2. The
optimal number of latent factors is K = 800 and model
training parameters amount to 64.4 million. The regularization
parameter is set, using Eq. (12). NIMF is compared against the
same methods, which were tested on MovieLens 1m dataset.
Although, NIMF RMSE is greater than that of CF-NADE by
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0.01, the training time of NIMF is 0.94 sec per epoch and test
time is 0.40 sec, while the corresponding times of CF-NADE
are 135.62 sec per epoch and 32.73 sec, respectively. The
time requirements per epoch between NIMF and CF-NADE
are listed in Table IV.

The low time requirements of the proposed method are
due to the extremely simple NIMF architecture, requiring a
forward pass of 2 sparse matrix multiplications and 1 inner
product. In addition, just 1 weight matrix is learned by NIMF
for the entire rating scale in contrast to the learnable weight
matrices of the state-of-the-art methods, such as CF-NADE
and GC-MC, which are as many as the cardinality of grades
in the rating scale (i.e., 5 for a 5-star rating system with 1-
star increments and 10 for a 5-star rating system with 0.5-star
increments).

V. CONCLUSION AND FUTURE WORK

A novel MF method coined as NIMF has been proposed.
NIMF uses interactions between users and items in order to
learn their latent representations. The architecture of NIMF
consists of 2 layers only. One layer is responsible for users’
representations and the other one concerns with items’ rep-
resentations. This simple architecture leads to a model with
competitive performance compared to that of state-of-the-
art methods. Furthermore, NIMF achieves a large train/test
time reduction compared to other methods. The low time
requirements of NIMF motivate future research, because it
can lead to an efficient handling of new users in real-world
applications, especially without retraining the model. A niche
application is hotel/restaurant recommendation mining ratings
and user preferences in platforms, such as booking, tripadvisor.
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