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Abstract—Training network models to accurately respond to
market fluctuations requires access to vast amounts of data.
Data availability is strictly bound to the market’s evolution,
which updates only on a daily basis. In this paper, we propose
several solutions based on Generative Adversarial Networks for
providing artificially generated time series data with realistic
properties. The main challenge here is the specificity of the
target data, which has properties that are difficult to control
and have wide variations in time, e.g., central moment statistics,
autocorrelation or cluster volatility. Another contribution is in
assessing the quality of synthetic data, in general, as there is no
standard metric for this. Experimental validation is carried out
on real-world financial data retrieved from the US stock market.

Index Terms—financial, time series, fintech, adversarial, GAN,
generation

I. INTRODUCTION

Financial markets have always been a focus point for
researchers around the world because of the major financial
gain that accurate insights would provide. Scientists have
tried to design models that fit the markets in an attempt
to make reasonable analysis and automatic prediction of
various phenomena. In practice, two major directions have
been explored: (i) use of stochastic processes [1], [2], and
(ii) employment of agent-based models [3], [4]. Nevertheless,
financial time series proved to be too complex to be modeled
perfectly with these mathematical tools [5]. A solution are the
current state-of-the-art deep neural networks. To be able to
exploit their full potential in providing accurate predictions,
they require even more data than the traditional handcrafted
feature-based learning models. Thus, it is of great interest to
be able to synthesize new financial data which resembles real
stock markets, on the spot, to train complex models.

One approach is to focus on predicting the next sam-
ple(s) in a sequence based on the available recent history.
This can be modeled as trying to perform the prediction
p(xt+1, ..., xt+n|x1, ..., xt), where x1, ..., xt are the historical
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values from moment 1 up to moment t and xt+1, ..., xt+n are
the future n samples that are being predicted. Most of the time,
n = 1 is considered to be enough. For instance, Zhou et al. [6]
propose a generic framework employing Long Short-Term
Memory (LSTM) and convolutional neural networks for adver-
sarial training to forecast high-frequency stock market. Wiese
et al. [7] use temporal convolutional networks and manage to
capture longer-ranging dependencies such as the presence of
volatility clusters. A more general approach is TimeGAN [8],
a framework that learns an embedding space jointly optimized
with both supervised and adversarial objectives. Kim et al. [9]
tackle financial time series prediction with stacked LSTM,
attention networks, and weighted attention networks.

Another approach is to generate a fixed number of consecu-
tive samples at a time, in a data set augmentation manner. This
procedure requires to extract windows of a given length Lw

when creating the training data set for the GAN. An example
is the framework in [5], where the authors propose several
mixtures of multilayer perceptrons and convolutional neural
networks to generate fixed-length time series.

In this paper, we push forward the advances in accurate
window-based time series data generation and bring the fol-
lowing contributions: (i) we adapted various network architec-
tures commonly used for images to 1D time series generation,
(ii) we are the first to propose a multi-channel approach for
stock prices generation, (iii) we approach the evaluation of the
quality of the synthetic generated data and propose qualitative,
and quantitative measurements. Although our work follows
a similar principle to Takahashi et al. [5], we explore more
advanced network models, introducing a novel multi-channel
perspective, as well as an extensive evaluation.

The remainder of the paper is organized as follows. Sec-
tion II provides a description of the financial time series.
The proposed solutions are presented in Section III. The
experimental setup and results are presented in Section IV.
Finally, Section V provides the conclusions and discusses
future work.
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II. FINANCIAL TIME SERIES

A company’s financial time series represents the chronolog-
ical evolution of several indicators. To create good prediction
models it is necessary to train on sufficiently large data sets.
However, this resource is not always freely available and, when
it is, it does not provide enough data for more complex models.
Generating realistic synthetic data is therefore a valuable lead.

In our work, we address the Open - High - Low - Close
(OHLC) indicators which are critical for market decisions,
e.g., the closing price captures information about how well
or poorly a stock performed during the day. In particular, we
investigate log returns, i.e., the logarithm of ratios of closing
prices from consecutive days, given by ri = ln Ci

Ci−1
, where

Ci represents the closing price of day i and ri the log return
closing price of day i. This ratio is useful because it reduces
not only the intra-variation of the time series, but also acts
as a normalization between different companies’ stocks, as
displayed in Figure 1. We can see there that two stocks that
do not have the same behavior and whose magnitudes of the
closing prices belong to different ranges can be successfully
encoded under the same range by applying the log return
transformation.

2000 2002 2004 2006 2008 2010 2012 2014 2016 2018
Time [years]

100

200

300

Cl
os

e 
pr

ice
 [$

]

ADBE
AOS

2000 2002 2004 2006 2008 2010 2012 2014 2016 2018
Time [years]

−0.3

−0.2

−0.1

0.0

0.1

0.2

Cl
os

e 
lo

g 
re

 u
rn

 p
ric

e

ADBE
AOS

Fig. 1. Log return influence on the intra and inter variations of the closing
prices for two companies (A. O. Smith Corp — AOS and Adobe Inc. —
ADBE); top — closing prices evolution over 20 years, bottom — log return
of the same prices.

Challenge. Unlike other data, financial time series acqui-
sition cannot be hasted since it is necessary to wait for an
entire day to extract one new sample, given that closing prices
are updated at the end of the trading day. Furthermore, the
microstructure of the financial market gives the financial time
series several properties and shapes [7], [10], [11]. It is known
that these data are more peaked than normal distributions and
exhibit a fat-tailed behavior (extreme values are more likely to
occur). Also, large changes of prices tend to cluster together,
an effect called volatility clustering. Lastly, empirical asset
returns are uncorrelated for any value of the lag larger than
one, but not independent. Therefore, generative models should
deal in particular with these aspects.

III. PROPOSED APPROACHES

Our solution is to synthesize large windows of data via
GANs. Unlike [6]–[9], we do not aim to generate the (n+1)th

sample, given the previous n samples, but we want to generate
entire new 1-dimensional arrays of length n. The target is to
generate a fixed-length vector of log return Close prices. The
only work similar to ours that we could find in the literature
is of Takahashi et al. [5]. Therefore, we recreated and adapted
the architectures proposed by them as a baseline. Since an
exact description of the layers that they used is missing, we
experimented with different setups and reported only the best
performers.

In the following, we describe each of the architectures that
were implemented. The length of the synthesized 1D array,
Lw, has been set to 250 for all models, the equivalent of an
entire working year in finance. Please note that all architectures
are presented in their optimized versions, achieved after in-
depth ablation studies.
Fully connected GANs - MLP. We implemented four MLP
architectures with different number of layers and neurons per
layer, denoted MLP1 to MLP4.
MLP1’s generator is a 20− 40− 80− 160− Lw network

and the discriminator has a Lw − 80 − 40 − 20 − 10 − 1
structure, where each value represents the number of neurons
in the respective layer. We used Leaky ReLU activations [12]
and dropout layers in the Generator with batch normaliza-
tion layers [13] in the discriminator. MLP2 has the same
layer dimensions as MLP1, but without the dropout and
batch normalization layers. MLP1 and MLP2 are adapted
from Takahashi et al. [5]. Additionally, we propose MLP3

which has a 20 − Lw − Lw − Lw − Lw generator, and a
L2−80−80−20−20−1 discriminator, without dropout and
batch normalization. We also implemented MLP4, a shallow
version of MLP3, with only the first 3 layers in the generator
and discriminator in order to assess the impact that the number
of layers has.
Fully convolutional GANs - FCGAN. We implemented three
architectures for fully convolutional GANs: FCGAN1 to
FCGAN3, which were derived from DCGAN [14].

All models follow a 100− 96− 48− 24− 12− 1− fc(Lw)
structure in the generator and a Lw − 1 − 12 − 24 − 48 −
96 − 1 − fc(1) structure in the discriminator, where each
value represents the number of feature maps in the respective
layer and fc(x) denotes a fully connected layer, where x is
the size of the output array for each channel. FCGAN1 uses
transpose convolutions followed by batch normalization layers
and ReLU activations in the generator. The discriminator
has a mirrored structure, with convolutional layers replacing
the transpose convolutions and Leaky ReLU replacing ReLU
activations; FCGAN2 is same as FCGAN1, but without
any batch normalization; FCGAN3 is a shallow version of
FCGAN1, replacing the last 2 layers in both generator and
discriminator with a flattening layer to adapt to the output
dimension. Both FCGAN1 and FCGAN2 are adaptations of
the models proposed by Takahashi et al. [5]. Again, since an
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accurate description of the layers’ setup is missing we tried
several models and reported the best ones.
Multichannel GANs - FCGANmc. We propose a new
multichannel approach, denoted FCGANmc. To the best
of our knowledge, this is the first time it is used in the
literature. Different from previous approaches, we intend to
generate entire OHLC financial time series (see Section II).
The generator has a 100 − 96 − 48 − 24 − 12 − 4 − fc(Lw)
structure, and we used a Lw−1−12−24−48−96−4−fc(1)
setup for the discriminator. The fully connected layer in the
end is still necessary to switch from the dimension of each
feature map to the dimension of the generated sample. More
information on this model is given in subsection IV-A.
Spectral normalization GAN - snFCGAN. We use a 100−
96−48−24−12−1−fc(Lw) structure in the generator and
a Lw − 1 − 12 − 24 − 48 − 96 − 1 − fc(1) structure in the
discriminator, but with spectral normalization layers replacing
batch normalization layers. We are interested to see spectral
normalization’s impact since this technique has been proven in
the literature [15] to offer better results for image generation
by avoiding the notorious mode collapse.
Wasserstein GANs - WFCGAN and WMLP. We propose a
Wasserstein GAN [16] implementation, with weight clipping,
for the MLP3, FCGAN1 and FCGAN2 architectures, de-
noted WMLP3, WFCGAN1 and WFCGAN2, respectively.
The general architectures remained unchanged, but the opti-
mization was changed to the Wasserstein framework. During
each epoch we trained the Discriminator for 5 iterations, then
the Generator for one iteration.

IV. EXPERIMENTAL SETUP

We trained the generator to output 1-dimensional arrays of
fixed length or, in the case of the multichannel architectures,
4-dimensional arrays, of length Lw. The generators start from
randomly generated noise vectors of size 20 and 100 for the
MLP and FCGAN architectures, respectively. All discrimina-
tors take arrays of length Lw as input and output a single
real value, representing the decision, whether the processed
sample was real or not, following the GAN framework. We
trained our systems for 200 epochs with fixed learning rates
of values from the {1e − 05, 5e − 04, 1e − 04} set. We ran
all our experiments using PyTorch [17] on a system with 2
NVIDIA QUADRO M4000 GPUs.

A. Data

For training the models, we used the S&P index1, provided
by Hana Institute of Technology. This extended data set
consists of 1,506 companies with daily OHLC records from
January 1st 1999 to June 17th 2019.

The data set consists of time series with different starting
dates (the date when the respective company was first listed
on the market), but the same end-date, namely the last day of
the data set. The nature of the financial data gives rise to the
problem of training a system to generate fixed length samples

1https://www.spglobal.com/ratings/en

on a data set with varying-length instances. The solution that
we found for this problem was to split each available time
series into chunks of a fixed number of samples using a sliding
window. For each company we slid a window of length Lw =
250 days across its closing log returns vector, with a stride
of 30 days. This means that we extract one year’s worth of
data for each window, with a stride of 6 weeks, expressed
in trading days, and add each such window to our training
set. The discriminator extracts random batches from this set
to compare with the samples synthesized by the generator.

For the multichannel architectures, we generated OHLC
using four channels instead of one in the fully convolutional
setup. OHLC values may be several orders of magnitude
different between companies, but they are close to each other
for the same company. Also, daily updates bring only small
absolute modifications for any of these 4 prices. Therefore,
it is easier to encode ratios of OHLC values, rather than
their absolute values. Thus, instead of Open prices we used
Closen−Openn

Closen−1
. For the next 3 channels we imposed a restric-

tion on the model to generate only positive values. This makes
it easier for the model to infer more relevant samples. Given
that High represents the maximum value that the stock took
that day, we created a vector of Highn−Closen

Closen−1
, which are

sure to be positive values. Similarly, we generated a vector
of Closen−Lown

Closen−1
, which results also in positive values. The

last channel is represented by the Close return prices, i.e.
Closen

Closen−1
. For Open prices, however, this logic couldn’t be

applied, since Open prices might be greater or lower than
Close prices, without any particular rule.

B. Evaluation

While the evaluation of classification and retrieval systems
is a well know problem and many metrics were validated dur-
ing time [18], the evaluation of synthetic generated data is still
an open issue, especially in the financial field. Several attempts
have been made to assess the goodness of synthesized images,
e.g., Inception Score [19] and Fréchet Inception Distance [20]
but transforming financial time series to images behaves poorly
when assessed by a neural network trained on natural images.
We therefore analyze and propose a series of metrics that
were inspired by signal processing problems. Most of these
metrics are still experimental regarding how accurate they can
describe the performance of a financial data GAN, but they
can still help establish an hierarchy between different models.
We approach the evaluation at two levels: (i) qualitatively, and
(ii) quantitatively, as presented in the following.
Qualitative analysis. Lucic et al. [21] argue that it is necessary
to report a summary of distribution of results, rather than a
single best result achieved. To capture as much information
as possible, we randomly select one batch of real data and
one of synthesized data during each epoch and we compare
their distributions. In order to check whether the synthesized
samples are coherent from a financial point of view, we
propose to explore the following properties: Central moments
— two distributions that share the same behavior for mean,
standard deviation, skew and kurtosis are likely to be similar;
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TABLE I
QUALITATIVE AND QUANTITATIVE RESULTS (3MEANS THAT THE PROPERTY IS MET, WHEREAS 7THE CONTRARY).

Arch. name Mean STD Skew Kurtosis Autocorr Heavy-tail Cluster
Volatility t-SNE DKL JSD

K-S
statistics

EM
distance

MLP1 [5] 7 7 3 7 7 7 7 7 721.5 0.5757 0.4021 0.1140
MLP2 [5] 3 3 3 7 3 3 7 7 29.81 0.0897 0.0301 0.0028
MLP3 3 3 3 7 7 3 7 7 128 0.1235 0.0465 0.0088
MLP4 3 3 3 7 7 7 7 3 99.89 0.2095 0.131 0.0106
WMLP3 3 3 3 3 3 3 7 7 39.08 0.1031 0.0323 0.0030
FCGAN1 [5] 7 7 7 7 7 7 7 7 197.5 0.2315 0.1709 0.0115
FCGAN2 [5] 3 3 3 3 7 3 7 3 13.26 0.0454 0.0178 0.0011
FCGAN3 7 7 7 7 7 7 7 7 673.8 0.5341 0.4007 0.1026
WFCGAN1 3 3 3 7 3 3 7 3 18.23 0.0570 0.0359 0.0018
WFCGAN2 3 3 7 7 7 3 3 3 26.06 0.0825 0.0387 0.0034
sn FCGAN 7 7 7 7 7 3 7 7 23.53 0.0953 0.0408 0.0031
FCGANmc 3 3 3 3 7 3 7 7 78.16 0.1101 0.0797 0.0032

Autocorrelation — a well-known property of financial time
series is that they do not posses a linear predictability, meaning
that the autocorrelation of the returns is a diminishing function.
Heavy-tailed distribution — financial time series are known to
exhibit a heavy-tailed behavior, i.e., their distribution presents
a higher probability of sampling very high and very low
values than a normal distribution would. Volatility clustering
— another well-known property is the volatility clustering,
meaning that changes (either high or low) come grouped in
clusters. t-SNE and PCA for 2D visualization — these are
two common methods to assess the similarity between several
data distributions. As t-SNE [22] is computationally heavy
to perform on large amounts of data, we follow the authors’
advice and first perform a PCA dimensionality reduction for
our data.

Quantitative analysis. Quantitative analysis is generally quite
difficult to perform on generative models, especially in the
context of this relatively new issue of data generation. To
provide a solution, we adapt metrics that are generally used
in the information theory field as well as metrics designed
for generative models but in other fields, such as image
and speech processing, namely: Kullback-Leibler divergence,
Jensen-Shanon divergence, Kolmogorov-Smirnov test statis-
tics, and Earth Mover’s distance [23]. We are interested in
the lowest values for each of these metrics. All of them are
in accordance with the optimization criterion of GANs and
we found them to be most adequate for our setup from an
information theoretic point of view.

Results and discussion. As there are very few other ap-
proaches tailored for this type of time series data generation
in the literature, we compare our proposed architectures to the
ones in [5]. Extensive experimenting was conducted varying
different parameters. We made snapshots of each network
setting whenever it would encounter a new best value for
any of the proposed quantitative metrics. Afterwards, we went
through all of these snapshots and manually inspected all
the qualitative metrics. Empiric results show that among the
proposed metrics, the Jensen-Shanon divergence proves to be
the best suited for our financial time series GANs, so we
present the results for the snapshots that achieved the best

JSD for each network model. Table I synthesizes the achieved
results.

The first observation is that the ranking based on one metric
does not necessarily generalize to other metrics. For the time
being, it is safe to assume that if we fix an architecture,
the snapshot with the lowest JSD values has overall better
performance.

Secondly, by examining the difference between MLPs and
FCGANs we observed that it is easier for MLPs to fit the
first three central moments than it is for FCGANs. However,
none of the vanilla MLPs managed to also imitate the kurtosis
behavior, in contrast to FCGAN2. Several works [24], [25]
insisted on replicating higher order statistics, but their research
was carried on the encoded features, rather than on generated
samples, which is more suited to autoencoder frameworks
(stacked or variational). In [26], the authors show that it is
difficult to achieve the third and fourth moment statistics with
regular GANs.

Another important aspect refers to the depth of the network.
Shallow versions such as MLP4 and FCGAN3 underperform
when compared to their deeper versions, i.e. MLP3 and
FCGAN1, respectively. Increasing the depth of the network
further also increases the risk of overfitting due to the large
number of trainable parameters that it adds.

We also noticed that batch normalization is drastically
decreasing the performance and leads to mode collapse. This
was also confirmed by the authors in [5], who also discovered
that the addition of batch normalization layers hinders the
realistic generation of financial time series. This is counter-
intuitive since batch normalization has been successfully used
to address this issue, in particular, in the literature.

A surprising result is in the case of the snFCGAN , which
failed in all qualitative assessments, but obtained very good
results for the quantitative metrics. This strengthens more the
assumption that there is no certainty that one metric is enough
to characterize these type of models.

Our proposed approaches performed generally better than
the ones existing in the literature. Concretely, the Wasserstein
GANs topped their vanilla counterparts, as we observed an
improvement in the case of WMLP3 and WFCGAN1. A
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careful tuning of the number of iterations for the critic and the
discriminator has to be performed in order to avoid overfitting.
Our proposed multichannel architecture managed to attain
similar skewness and kurtosis values to the real data, unlike
most of the other architectures that we tried. This proves
that using more data at each point helps stabilize the training
process and attain the desired central moments.

We found that autocorrelation and cluster volatility were
difficult to capture in the synthetic data generation. One reason
is that the training data contains a great deal of variety. Lastly,
the t-SNE visualization was not very informative. We gave a
positive vote only in those cases where the data distributions
were clearly grouped together and had a similar pattern. Cases
which presented outliers from the cluster were, thus, excluded.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we proposed various GAN architectures for
the generation of realistic financial time series. We analyzed
the influence of the network parameters, such as the type
and number of layers, the underlying framework, and the
number of channels. We investigated several quantitative and
qualitative metrics that can be useful when using such systems.
Experimenting on real-world data, results show that the best
candidate architecture is Wasserstein MLP for replicating the
statistics of interest whereas the Jensen-Shanon divergence
is best suited for determining the model that best replicates
the real data probability distribution. We found also that the
large variety in the training data set raises numerous problems
during the training procedure. One way of overcoming this
setback would be to cluster the input data in groups that exhibit
similar properties. Overall, the results are very promising and
support the possibility of achieving high quality artificial data.

Future work will mainly focus on the investigation of sev-
eral other more complex generative architectures that involve
variational autoencoders (VAEs), VAE-GANs and conditional
GANs. Also, other metrics should be explored and a lead is
to assess the quality of the prediction for models trained on
real and artificial data.
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gan: Towards deeper understanding of moment matching network,” in
Advances in Neural Information Processing Systems, 2017, pp. 2203–
2213.

[26] J.-L. Wu, K. Kashinath, A. Albert, D. Chirila, H. Xiao et al., “Enforcing
statistical constraints in generative adversarial networks for modeling
chaotic dynamical systems,” Journal of Computational Physics, vol. 406,
p. 109209, 2020.

1345


