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Abstract—The paper presents a framework for multi-sensor
fusion using discriminative autoencoders. It employs a two stage
network where in the first stage, dedicated autoencoders are
learnt for each sensor to obtain sensor-specific representations.
The corresponding latent representations from all sensors are
combined to learn a fusing autoencoder in the second stage. The
latent representation of this stage is used to learn a label consis-
tent classifier for multi-class classification. A joint optimization
technique is presented for learning the autoencoders and classifier
weights together. This framework is tested for two real life
scenarios from different domains and comparisons with the state-
of-the-art techniques is presented. Additionally, the robustness of
the fusion framework is demonstrated in noisy environments. The
joint optimization allows discriminative features to be learnt from
the different sensors, and hence it displays superior performance
than the state-of-the-art methods with reduced complexity.

Index Terms—Sensor fusion, Joint optimization, Supervised
learning, Autoencoder, Feature extraction, Classification

I. INTRODUCTION

Multi-sensor fusion aims to combine several data sources
or sensors so as to portray a unified picture with improved
information [1], [2]. Data fusion exploits the complementary,
competitive or cooperative information available from indi-
vidual sensors to produce a synergistic effect [3]. As a result,
it has been extensively used to interpret data from unimodal
and multimodal sensors in diverse applications like remote
sensing [4], machine health monitoring [5], multi-focus image
fusion [6], gesture control and recognition [7], etc. An array
of techniques such as geometrical [8] and graphical [9] ap-
proaches, multi-modal analysis [10], estimation, classification
and inference methods [11] are employed for different data
fusion applications.

Lately, the increasing complexity of the sensing environ-
ments demand multiple sophisticated sensors to be deployed,
with large volume of data being acquired for efficient in-
ference making. Processing of such complex and volumi-
nous data often exceeds human capability [12]. As a result,
representation learning with deep learning architectures has
profoundly influenced the field of multi-sensor fusion [13]–
[16]. Representation learning techniques extract unique signal
dependent abstract patterns, and learns useful representations
for predictive and prescriptive analytics [17]. Among the
different representation learning techniques, autoencoders that
are self supervised neural network architectures have been
widely used for dimensionality reduction [18], feature learning
[19], denoising [20] and image segmentation [21], in addition
to multi-sensor fusion.

The authors in [22] use a set of pre-trained autoencoders
for multi-channel feature extraction, followed by a multi
layer perceptron for spoofing detection in face recognition
systems. Pulgar et al. propose the AEkNN model for clas-
sification tasks [23]. An autoencoder is trained for suitable
latent representations of data in the training phase. During the
testing or classification phase, kNN algorithm is employed
to detect the correct classes. The work in [24] uses SAE-
DBN architecture for bearing fault classification. Statistical
feature vectors, generated from individual vibration sensors,
are fed to sparse autoencoders seperately to generate latent
representations. Fault indicators, obtained by fusing the SAE
representations, are fed to DBN for classification tasks. It is to
be noted that in these works, feature learning and classification
are done separately. This does not ensure efficient features to
be learnt for the specific application at hand. Hence, in this
paper, a joint learning of features and classifier is proposed for
multi-sensor fusion scenario. This results in coherent signal
representations to be learnt, and helps in robust inference
making. The proposed method makes use of discriminative
autoencoders for learning representations from different sen-
sors and fusing them together, and thus is referred as F-DiAE
(Fusion using Discriminative Autoencoders) in this paper.

F-DiAE uses dedicated autoencoders for each sensor to
learn sensor-specific representations. The latent representa-
tions from different sensor signals are combined, and used to
learn the fusing autoencoder. Subsequently, the representation
learnt from the fusing autoencoder is considered as the feature
space for multi-class classification. Similar to the discrim-
inative autoencoder work in [25], a discriminative penalty
based on the available class information is applied for learning
the autoencoders. The work in [25] focused on RGB image
classification where feature learning and classification were
done separately. However, this work presents a joint learning
framework for multi-sensor fusion where sensor representation
learning and classification are considered together. A similar
work based on joint learning but utilizing transform repre-
sentation for raw data level fusion of multiple sensors for
regression task is presented in [26]. In contrast to [26], the
proposed work employs an autoencoder based framework for
fusing information from multiple sensors for multi-class clas-
sification. To learn the sensor representations, this framework
utilizes class label information that helps in learning high level
abstract features that are more discriminative compared to the
features learnt using the standard autoencoder formulation.

The major contributions of this work are summarized as
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Fig. 1: Block diagram of the proposed F-DiAE framework.

follows:

• A novel discriminative autoencoder based multi-sensor
fusion framework (F-DiAE) for classification tasks.

• Joint learning of the autoencoders and classifier weights
using an optimization formulation that enables discrimi-
native features to be learnt for individual sensor signals,
and aids in classification.

• Improvement in classification accuracy with reduced
complexity over state-of-the-art methods.

The rest of the paper is organized as follows. Section II gives
an overview on autoencoders followed by a detailed descrip-
tion of the proposed F-DiAE framework. Section III presents
the experimental results obtained with different datasets from
different domains. Finally, Section IV concludes the work with
directions for future work.

II. MULTI-SENSOR FUSION USING DISCRIMINATIVE
AUTOENCODERS (F-DIAE)

A. Brief Background on Autoencoders

Autoencoder is a self supervised neural network consisting
of an encoder We that translates the input data matrix X to
a representation H in the latent space, and a decoder Wd to
reconstruct the input asX . Mathematically, it can be expressed
as: H = φ(WeX) and X =WdH , where φ(·) is the non-
linear activation function like ReLU, sigmoid etc. The dimen-
sion of the latent representations is mostly under-determined
(less than the input dimension), but can be over-determined
(more than the input dimension) or the same dimension as the
input, depending on the use case considered. Traditionally,
the encoder and decoder weights of the autoencoder are learnt
using back propagation by minimizing the reconstruction error
that is expressed as:

min
We,Wd

‖X −Wdφ(WeX)‖2F . (1)

The reconstruction error need not be restricted to Euclidean
cost and can accommodate other forms as well. Substituting
the latent representation H = φ(WeX), following from
[25], [27], the learning of the autoencoder in an augmented
Lagrangian form can be re-written as:

min
We,Wd,H

‖X −WdH‖2F + µ‖H − φ(WeX)‖2F . (2)

This formulation is utilized for learning the autoencoders
employed in the proposed fusion framework, described in the
subsequent section.

B. Proposed Framework

The proposed F-DiAE framework makes use of a two-
stage autoencoder based architecture for fusing information
from multiple sensors. The block diagram of the proposed
framework is presented in Fig. 1. Let Xi denote the raw
data or features extracted from the ith sensor data for i =
{1, 2, · · · , n}. In the first stage, dedicated autoencoder are
employed to learn high level abstract features Hi from each
Xi. Subsequently in the second stage, latent representations
from all sensors are stacked together in Z and given as input
to fusing autoencoder whose latent representation Hf are fed
to a label consistent classifier.

In the training phase, a joint learning is carried out in which
the sensor-specific autoencoders, fusing autoencoder and clas-
sification weights M are learnt utilizing the knowledge of
the output labels Y . This configuration allows discriminative
features to be learnt from each sensor, thereby exploiting the
complementary information shared by them towards deriving
the final inference. In the test phase, the learnt sensor-specific
encoders, fusing encoder and classification weights are utilized
to generate the output corresponding to the test data. These two
phases are described in detail below.

Training Phase: For a network of n sensors, utilizing the
augmented Lagrangian formulation for autoencoders in (2),
the joint optimization framework for F-DiAE is expressed as:

min
θ

n∑
i=1

‖Hi −WeiXi‖2F +

n∑
i=1

‖Xi −WdiHi‖2F+

‖Hf −WeZ‖2F + ‖Z −WdHf‖2F + λ‖Y −MHf‖2F
(3)

s.t. H1 ≥ 0, · · · ,Hn ≥ 0,Hf ≥ 0

where the parameter space θ = {We1,Wd1,H1, · · · ,Wen,
Wdn,Hn,We,Wd,Hf ,M} and Z = [H1, · · ·,Hn]

T .
Here, a ReLU type non-linearity is applied on the latent
representations by enforcing the representations of each layer
to be non-negative [25]. The first two terms are associated with
learning the sensor-specific autoencoders of the first stage.
For the ith sensor, input Xi ∈ RL×N represents N mea-
surements of L dimensions, the associated Wdi ∈ RL×m1 ,
Wei ∈ Rm1×L and Hi ∈ Rm1×N are learnt where m1

is the dimension of the latent representation. The third and
fourth terms are associated with the learning of the fusing
autoencoder in the second stage using the stacked input from
the first stage Z ∈ Rnm1×N with Wd ∈ Rnm1×m2 , We ∈
Rm2×nm1 and Hf ∈ Rm2×N with m2 as the dimension of
the latent representation in this stage. The last term is the label
consistency term [25] that maps Hf to the output Y ∈ Rk×N

using the classifier M ∈ Rk×m2 where k denotes the number
of classes. The output Y = [y1|y2|· · ·|yN ] consists of N
binary vectors of length k with the labeled class denoted by 1
and the remaining 0. Please note in this framework, both the
encoder and decoder weights of the autoencoders are given
equal importance and the hyperparameter associated with these
terms is 1 and hence not explicitly shown.

The non-convex optimization problem in (3) is solved
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using Alternate Direction Method of Multipliers (ADMM)
that guarantee global convergence compared to other gradient
methods [28]. ADMM reduces (3) into a number of sub-
problems; to solve for one of the parameters at a time while
keeping others fixed. For the ith sensor-specific autoencoder
of the first stage of F-DiAE, the sub-problems to learn the
encoder and decoder weights, and hidden representation are
given as:
Wei ← min

Wei

‖Hi −WeiXi‖2F (4)

Wdi ← min
Wdi

‖Xi −WdiHi‖2F (5)

Hi ← min
Hi

‖Hi −WeiXi‖2F + ‖Xi −WdiHi‖2F +

‖Hf −WeZ‖2F + ‖Z −WdHf‖2F (6)

The update equations (4) and (5) are straightforward, and can
be solved using least squares. For the update of Hi, the third
and fourth terms in (6) are expanded in terms of Hi as below:

‖Hf −WeZ‖2F =
∥∥∥Hf −W (i)

e Hi −
n∑

j=1,j 6=i

W (j)
e Hj

∥∥∥2
F

‖Z−WdHf‖2F =
∥∥∥Hi−W (i)

d Hf+

n∑
j=1,j 6=i

(Hj−W (j)
d Hf )

∥∥∥2
F

where We = [W
(1)
e |W (2)

e |· · ·|W (n)
e ], and Wd =

[W
(1)
d ,W

(2)
d , · · ·,W (n)

d ]T . Solving for Hi by expanding
the formulation (6) in terms of trace, taking derivative with
respect to Hi and equating to 0 gives the following closed
form update:

Hi =
(
W T

diWdi + 2I +W (i)
e

T
W (i)

e

)−1(
W T

diXi +WeiXi

+(

n∑
i=1

W
(i)
d )Hf +W (i)

e

T
Hf −

n∑
j=1,j 6=i

Hj

−W (i)
e

T
(

n∑
j=1,j 6=i

W (j)
e Hj)

)
(7)

Similarly, one can obtain the updates for all other sensor-
specific autoencoders. For the second stage, We, Wd and M
are updated using least squares by solving the following:

We ← min
We

‖Hf −WeZ‖2F (8)

Wd ← min
Wd

‖Z −WdHf‖2F (9)

M ← min
M
‖Y −MHf‖2F . (10)

The update for Hf is obtained by solving for the following
sub-problem:
Hf ← min

Hf

‖Hf−WeZ‖2F+‖Z−WdHf‖2F+λ‖Y −MHf‖2F .
(11)

Similar to solving for (6), the update for Hf is given as:

Hf =
(
W T

d Wd + I + λMTM
)−1(

W T
d Z +WeZ +

λMTY
)
. (12)

It is to be noted that the non-negativity constraints are not
considered explicitly here. This would have required solv-

ing an iterative forward-backward algorithm which, in turn,
would make the solution more time consuming. Instead, an
approximation is used whereby after solving for each latent
representation, the negative values are set to 0 (see [29]). The
network parameters of the F-DiAE framework are updated
iteratively until the convergence criteria is met after which the
model is said to be learnt and the training stops. Convergence
is achieved when the loss function (3) is within the predefined
threshold or tolerance level.

Test Phase: For test data Xtest
i corresponding to the i-th

sensor, the latent representation Htest
i is obtained using the

learnt weight Wei expressed as:
Htest

i =WeiX
test
i . (13)

This is repeated for all n sensors. All latent representations
are stacked as Ztest = [Htest

1 , · · · ,Htest
n ]T and are subse-

quently used to estimate the output label using the following:
Htest

f =WeZ
test

Ŷ test =MHtest
f .

III. RESULTS AND DISCUSSION

Two datasets from completely different domains have been
considered to demonstrate the effectiveness and generalizabil-
ity of the proposed F-DiAE framework for fusion. The first
one is from industrial machines for bearing fault detection
and classification. The second one is based on human ac-
tivity detection using two spatially distributed radars. The
performance of F-DiAE is compared against the state-of-the-
art methods for both the datasets. F-DiAE employs a Max
Pooling architecture at the output to determine the class label.
The value of hyperparameter λ and hidden layer dimension of
all the autoencoders of F-DiAE are tuned using grid search
and optimal values are used to present the results.

A. Bearing Fault Detection

The bearing data provided by the Case Western Reserve
University (CWRU) Bearing Data Center [30] is used for
classifying normal and faulty bearings. The experimental setup
includes a motor whose shaft is supported by bearings installed
at the drive end and fan end of the motor. Faults of different
diameters 7mils, 14mils and 21mils are introduced each in
the ball, inner race and outer race of the bearings. Two
accelerometers, mounted at the drive end and fan end of the
motor respectively, are used to capture the vibration data at
a sampling frequency of 12 kHz under four different loading
conditions - 0, 1, 2 and 3 hp.

A 4-class classification problem is studied for classifying
healthy and faulty bearings. The different classes are healthy,
ball defect, inner race defect and outer race defect respectively.
This classification is carried out for the following two scenar-
ios: (i) inception faults (faults at its onset) and (ii) faults across
all severity levels. A sample duration of 500 milliseconds is
considered for these two classification problems. For inception
fault detection, faulty data corresponding to 7mils diameter is
only considered which amounts to 320 samples for all the 4
classes. For fault detection across all severity levels, faulty
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TABLE I: Performance comparison of F-DiAE and other
methods for bearing fault detection

Method Hidden Inception Faults All Faults
Nodes (%) (%)

SVM - 97.2 -
KNN - 95.6 -
MLP (20,40) 96.8 -

SAE-DNN (20,40) 97.4 -
[31] RNN (20,20) 95.6 -

GRU (20,20) 98.1 -
BiGRU (20,20) 98.5 -
LFGRU (20,80) 99.6 -

[32] ICDSVM - 100 97.75
F-DiAE (2*10,20) 100 99.38

data corresponding to all fault diameters are considered which
results in a total of 640 samples for classification.

Similar to the work in [31], different time, frequency and
time-frequency domain features are extracted from accelerom-
eter data. Here, features from both the accelerometers mounted
at the drive end and fan end are fed to F-DiAE framework
for classification. The time domain features include root mean
square, variance, data peak, kurtosis, and peak to peak values.
The frequency domain features include spectral skewness, kur-
tosis and energy. Wavelet energy is used as the time-frequency
feature. The performance of F-DiAE and comparisons with the
state-of-the-art methods averaged over 5-fold cross validation
are presented in Table I. The network structure employed for
the deep learning models are also mentioned in the table. It can
be seen that for inception faults, F-DiAE demonstrates superior
performance with relatively simpler structure as compared
to deep learning based methods like BiGRU and LFGRU
in [31]. For comparing the performance of fault detection
across all severity levels, F-DiAE has better accuracy with
simple features than the work in [32] that employs permutation
entropy and intrinsic mode function based features followed by
optimized SVM for classification. Figure 2 presents the per-
formance characteristics of F-DiAE optimization framework
with (a) convergence plot and (b) accuracy versus λ plot for
this dataset. The algorithm converges within a few iterations.
It can be observed that the accuracy is not affected much for
different λ values.

The performance of F-DiAE is also tested for noisy en-
vironments that emulate a real life scenario. Additive White
Gaussian Noise (AWGN) is introduced at different SNR levels,
and the corresponding classification accuracies are computed.
Similar to the work in [33], 4-class classification for fault

(a) Convergence of loss function (b) Accuracy versus λ plot
Fig. 2: Performance of F-DiAE for bearing fault detection.

Fig. 3: Performance comparison of F-DiAE and other methods
with AWGN at different SNRs.

identification is carried out with noisy bearing signals for 0
loading condition. The accuracy obtained with the proposed
algorithm in the presence of noise, averaged over 5 folds cross
validation is presented in Fig. 3 along with other methods in
[33]. The results exhibit the superior performance of F-DiAE
for all SNR values, except at 20 dB where performance is
comparable to other methods. This highlights the robustness
and effectiveness of the proposed framework for classification
that is achieved by fusing information from multiple sensors.
B. Human Activity Recognition

This dataset uses two spatially distributed single channel
10.525 GHz continuous wave radar sensors for human activity
recognition [34]. The two radar sensors are placed vertically
one below the other separated by a distance of 1 meter. A total
of 20 individuals participated to this study, and performed 7
different activities corresponding to hand and leg movements.
These activities are - (i) swing right leg, (ii) move hands
inwards and outwards, (iii) swinging right leg and right hand,
(iv) stamping both feet, (v) swinging hands to and fro, (vi)
simulation of walking gesture and (vii) no movement. The
individuals perform these activities at a distance of 2 meters
from the radar setup stand. Each activity is performed for 20
seconds duration with the data being sampled at 2 kHz.

Different time, frequency and time-frequency features are
extracted from 10 seconds data frames. These features include
3 time domain features - kurtosis, variance, zero crossing rate;
1 from frequency domain - spectral kurtosis; and 3 features
from spectrogram envelope - mean, variance, skewness. Spec-
trogram is computed using 1024 point STFT with 256 point
Kaiser window having 75% overlap. The average performance
metrics of F-DiAE for a 7-class classification with 10-fold
cross validation on the radar dataset are presented in Table II,
along with results from the state-of-the-art methods utilized
for this dataset [34].

The work in [34] employs 10 time domain and 48 time-
frequency domain features over a two layer cascaded classifier

TABLE II: Performance comparison of F-DiAE and other
methods for activity recognition with radar data

Method Hidden Precision Recall Accuracy
Nodes (%)

[34] Multi-class Classifier - 0.86 0.84 84.3
2-layer Classifier - 0.90 0.89 88.6

[25] DiAE (10) 0.86 0.88 86.1
F-DiAE (2*7,14) 0.92 0.91 90.86
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(a) Convergence of loss function (b) Accuracy versus λ plot
Fig. 4: F-DiAE performance for human activity recognition.

network. The first layer determines the action group based on
the limb involved, and the second layer consists of dedicated
binary classifiers for each action group to determine the
corresponding activity. The various classifiers involved require
individual training. In Table II, it can be seen that DiAE [25]
performs better the multi-class classifier method [34] since it
is able to learn more discriminative features. However, the
proposed F-DiAE has the best performance. F-DiAE carries
out one shot classification using only 7 features mentioned
above. This can be attributed to the fact that the joint learning
of the autoencoders and classifier weights facilitates discrimi-
native features to be learnt that result in robust classification.
Similar to Section III-A, the performance characteristics of the
F-DiAE framework with radar data is presented in Fig. 4. It
can be seen that the algorithm converges fast, within a few
iterations. Also, it can be observed that the accuracy is more
for λ ≤ 5, after which it drops considerably.

IV. CONCLUSION AND FUTURE WORK

The paper presents a discriminative autoencoder based ar-
chitecture for multi-sensor fusion. The joint learning of the
autoencoders and classifier weights allows discriminative and
robust features to be learnt from sensor signals for more reli-
able inference making. This enables F-DiAE to perform better
than state-of-the-art methods for the two datasets considered
in this work. Also, the results presented at different SNR
levels demonstrate the robustness of the framework to noisy
environments. The proposed fusion framework is generic, and
can be adopted for other application domains that may involve
heterogeneous sensors as well. A direct extension of this
work is to explore deeper or stacked versions of F-DiAE
at both sensor representation learning and fusion stages for
improved inference making. In future, F-DiAE model can also
be examined for regression and synthesis tasks.
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