
Distributed Meta-Learning with Networked Agents
Mert Kayaalp, Stefan Vlaski, and Ali H. Sayed

Adaptive Systems Laboratory, EPFL
{mert.kayaalp, stefan.vlaski, ali.sayed}@epfl.ch

Abstract—Meta-learning aims to improve efficiency of learning
new tasks by exploiting the inductive biases obtained from related
tasks. Previous works consider centralized or federated archi-
tectures that rely on central processors, whereas, in this paper,
we propose a decentralized meta-learning scheme where the data
and the computations are distributed across a network of agents.
We provide convergence results for non-convex environments and
illustrate the theoretical findings with experiments.

Index Terms—meta-learning, learning to learn, multi-agent
optimization, networked agents, distributed learning

I. INTRODUCTION AND RELATED WORK

We consider a network of K agents. Each agent k has access
to data arising from a collection of tasks Tk. The probability
distribution over Tk is denoted by πk, i.e., the probability of
drawing task t from Tk is πk(t). In standard machine learning,
for any particular task t ∈ Tk, agent k trains a separate model
by solving:

min
w∈RM

J
(t)
k (w) , min

w∈RM
E
x
(t)
k

Q
(t)
k

(
w;x

(t)
k

)
(1)

where w denotes the model parameter, x(t)
k denotes the

random data corresponding to task t observed at agent k (all
random variables are denoted in bold), the loss Q(t)

k (w;x
(t)
k)

represents the penalty incurred by w under the random data
x
(t)
k , and J (t)

k (w) denotes the stochastic risk.
Learning models de novo might require vast amounts of data

and computational resources. In order to address this problem,
meta-learning, or learning to learn, utilizes prior knowledge
induced from related tasks in order to facilitate and accelerate
learning of new tasks.

One particular method is the model-agnostic meta-learning
(MAML) algorithm [2], which explicitly optimizes for a
launch model that can adapt to new tasks with one or small
number of gradient steps. For one step, finding the launch
model corresponds to minimizing the modified risk function:

min
w∈RM

Jk(w) , min
w∈RM

Et∼πk
J
(t)
k

(
w − α∇J (t)

k (w)
)

(2)

where α > 0 is the step size parameter. The gradient vector
corresponding to this risk is given by :

∇Jk(w) , (3)

Et∼πk

[(
I − α∇2J

(t)
k (w)

)
∇J (t)

k

(
w − α∇J (t)

k (w)
)]

The proofs of the results presented in this paper are omitted due to space
limitations. They can be found in [1].

In practice, πk and the distribution of x(t)
k are not known.

Therefore, it is common to approximate (3) by a stochastic
gradient vector:

∇Qk(w) ,
1

|Sk|
∑
t∈Sk

[(
I − α∇2Q

(t)
k (w;X (t)

in)
)
×

∇Q(t)
k

(
w − α∇Q(t)

k (w;X (t)
in) ; X (t)

o

)]
(4)

where X (t)
in , X (t)

o are two random batches of data, Sk ⊂ Tk
is a random batch of tasks, and |Sk| is the number of selected
tasks. Note that we use the notation Q(w;X) to abbreviate
1
N

∑N
n=1Q(w;xn) where {xn}Nn=1 are the elements of X .

We assume that all elements of X (t)
in , X (t)

o are independently
sampled from the distribution of x(t)

k and all tasks t ∈ Sk are
independently sampled from Tk.

Several works building up on MAML in single-agent set-
tings include the following: [3] proposes the Reptile algorithm,
which does not require Hessian calculations, [4] analyzes
the effectiveness of MAML and concludes feature reuse is
a dominant factor, and [5] studies the convergence of MAML.
In particular, [6] argues that minimizing the modified risk (2)
requires more samples than doing joint training (α = 0 in (2)).
Thus, distributed systems in meta-learning are more feasible,
considering the number of data and computational needs.

Another line of work examines meta-learning in federated
settings [7]–[10]. These works depend upon a central server
that gathers and averages the models of the agents. However,
a failure at this center can break down the system. Moreover,
increasing the number of agents adds to the communication
burden and can severely limit the capacity. In order to have a
system that is robust to failures and scalable, we propose a de-
centralized algorithm where the information transfer between
networked agents occurs via peer-to-peer communications.
This can be beneficial for privacy issues when the agents do
not prefer to share model parameters or data with the server.

Our algorithm combines MAML and diffusion learning for
decentralized optimization [11], which is particularly success-
ful in adapting to drifts in the data with constant step-sizes
[12]. References [13] and [14] analyze the convergence of
the diffusion algorithm in non-convex environments under
stochastic gradients, which are conditions that are also appli-
cable to our work. However, in our analysis, we work with
the MAML risk (2), which contains a gradient inside the
arguments. Hence, we need to make proper adjustments to
the analysis.

Contributions. In this paper, we propose a decentralized
meta-learning algorithm in which agents collaborate with their

1361ISBN: 978-9-0827-9706-0 EUSIPCO 2021

neighbors in order to solve an aggregate meta-objective. We
show that the agents come to agreement at a linear rate, hence,
the algorithm behaves like the centralized solution in terms
of performance even though it does not possess a central
processor. In addition, we demonstrate that the agreed models
converge to a first-order stationary point of the aggregate
objective in non-convex environments. Simulations with neural
networks are provided to support the theoretical findings.

II. DIFFUSION-BASED MAML (DIF-MAML)

In a non-cooperative setting, each agent k would optimize
its objective (2) separately. However, if the task collections
{Tk}Kk=1 are related, we would expect a better performance
when the agents cooperate since the effective number of the
data each agent processes increases. The cooperation can
be achieved by seeking a launch model that minimizes the
following network objective:

min
w∈RM

J(w) ,
1

K

K∑
k=1

Jk(w) (5)

Diffusion is a distributed algorithm that minimizes (5). We
assume a graph with combination matrix A = [a`k], where
the coefficients {a`k} are non-negative and add up to one:

K∑
`=1

a`k = 1, a`k > 0 if agents ` and k are connected

In the Adapt-then-Combine variant of diffusion [11], at every
iteration i, each agent k simultaneously performs the following
updates:

φk,i = wk,i−1 − µ∇Qk(wk,i−1) (6a)

wk,i =

K∑
`=1

a`kφ`,i (6b)

Expression (6a) is an adaptation step where all agents si-
multaneously obtain intermediate states φk,i by a stochastic
gradient update with constant outer-loop step size µ. Recall
that ∇Qk(wk,i−1) from (4) is the stochastic approximation of
the exact gradient ∇Jk(wk,i−1) from (3) . Expression (6b) is
a combination step where the agents combine their neighbors’
intermediate steps to obtain updated iterates wk,i.

The proposed method is presented in Algorithm 1. Each
agent starts with its own launch model. At every iteration, the
agents sample a batch of tasks and compute the task-specific
models by applying the task-specific stochastic gradients to
their current launch models. Consecutively, intermediate states
are found by applying the meta-stochastic gradients (4) to
the launch models. A non-cooperative algorithm would use
intermediate states as updated launch models and stop here
without exchanging any information between the agents. In
contrast, Dif-MAML has an extra step in which agents com-
municate with their neighbors and update their launch models
based on what they receive. This diffuses information across
the network and increases the number of tasks and data each
agent trains its model on.

Algorithm 1 Dif-MAML
0: Initialize the launch models {wk,0}Kk=1

1: while not done do
2: for all agents do
3: Agent k samples a batch of i.i.d. tasks Sk,i from Tk
4: for all tasks t ∈ Sk,i do
5: Evaluate ∇Q(t)

k

(
wk,i−1;X (t)

in,i

)
using a batch of

i.i.d. data X (t)
in,i

6: Set task-specific models w
(t)
k,i = wk,i−1 −

α∇Q(t)
k

(
wk,i−1;X (t)

in,i

)
7: end for
8: Compute intermediate states φk,i = wk,i−1 −

(µ/|Sk,i|)
∑

t∈Sk,i
∇Q(t)

k

(
w

(t)
k,i;X

(t)
o,i

)
using a batch

of i.i.d. data X (t)
o,i for each task (Check (4) to see

gradient expression explicitly)
9: end for

10: for all agents do
11: Update the launch models by combining the interme-

diate states wk,i =
∑K
`=1 a`kφ`,i

12: end for
13: i← i+ 1
14: end while

III. PERFORMANCE RESULTS

In this section, we analyze the convergence of Dif-MAML
in non-convex environments; proofs are omitted due to space
limitations but can be found in [1].

A. Assumptions

Assumption 1 (Lipschitz gradients). For each agent k and
task t ∈ Tk, the gradient ∇Q(t)

k (·; ·) is Lipschitz, namely, for
any w, u ∈ RM and x(t)

k denoting a data point:∥∥∥∇Q(t)
k

(
w;x

(t)
k

)
−∇Q(t)

k

(
u;x

(t)
k

)∥∥∥ ≤ Lx
(t)
k ‖w − u‖ (7)

We assume the second-order moment of the Lipschitz constant
is bounded by a data-independent constant:

E
x
(t)
k

(
Lx

(t)
k

)2
≤
(
L
(t)
k

)2
(8)

In this paper, for simplicity, we will work with L ,
max
k

max
t
L
(t)
k .

Assumption 2 (Lipschitz Hessians). For each agent k and
task t ∈ Tk, the Hessian ∇2Q

(t)
k (·; ·) is Lipschitz in expecta-

tion, namely, for any w, u ∈ RM and x(t)
k denoting a data

point:

E
x
(t)
k

∥∥∥∇2Q
(t)
k

(
w;x

(t)
k

)
−∇2Q

(t)
k

(
u;x

(t)
k

)∥∥∥ ≤ ρ(t)k ‖w − u‖
(9)

In this paper, for simplicity, we will work with ρ ,
max
k

max
t
ρ
(t)
k .

1362

Assumption 3 (Bounded gradients). For each agent k and
task t ∈ Tk, the gradient ∇Q(t)

k (·; ·) is bounded in expectation,
namely, for any w ∈ RM and x(t)

k denoting a data point:

E
x
(t)
k

∥∥∥∇Q(t)
k

(
w;x

(t)
k

)∥∥∥ ≤ B(t)
k (10)

In this paper, for simplicity, we will work with B ,
max
k

max
t
B

(t)
k .

Assumption 4 (Bounded noise moments). For each agent
k and task t ∈ Tk, the gradient ∇Q(t)

k (·; ·) and the Hes-
sian ∇2Q

(t)
k (·; ·) have bounded fourth-order central moments,

namely, for any w ∈ RM :

E
x
(t)
k

∥∥∥∇Q(t)
k

(
w;x

(t)
k

)
−∇J (t)

k (w)
∥∥∥4 ≤ σ4

G (11)

E
x
(t)
k

∥∥∥∇2Q
(t)
k

(
w;x

(t)
k

)
−∇2J

(t)
k (w)

∥∥∥4 ≤ σ4
H (12)

Defining the mean of the risk functions of the tasks in Tk
as Jk(w) , Et∼πk

J
(t)
k (w), we have the following assumption

on the relations between the tasks of a particular agent.

Assumption 5 (Bounded task variability). For each agent
k , the gradient ∇J (t)

k (·) and the Hessian ∇2J
(t)
k (·) have

bounded fourth-order central moments, namely, for any w ∈
RM :

Et∼πk

∥∥∥∇J (t)
k (w)−∇Jk(w)

∥∥∥4 ≤ γ4G (13)

Et∼πk

∥∥∥∇2J
(t)
k (w)−∇2Jk(w)

∥∥∥4 ≤ γ4H (14)

Note that we do not need to assume a relation between
the tasks of different agents for our convergence results to
hold. However, transfer learning between agents via diffusion
would be beneficial if the agents’ tasks are related. We keep
this assumption implicit.

Assumption 6 (Doubly-stochastic combination matrix). The
weighted combination matrix A = [a`k] representing the graph
is doubly-stochastic. This means that the matrix has non-
negative elements and satisfies:

A1 = 1, AT1 = 1 (15)

The matrix A is also primitive which means that a path with
positive weights can be found between any arbitrary nodes
(k, `), and moreover at least one akk > 0 for some k.

B. Adjusted MAML Objective

Because of the gradient within a gradient, the stochastic
MAML gradient (4) is a biased estimator of (3). Alternatively,
we can consider the following adjusted objective in lieu of (2):

Ĵk(w) , Et∼πk
EX (t)

in
J
(t)
k

(
w − α∇Q(t)

k (w;X (t)
in)
)

(16)

The stochastic MAML gradient (4) is an unbiased estimator
of the gradient corresponding to this adjusted objective:

∇Ĵk(w) = E∇Qk(w) (17)

Single-task Meta-objective Meta-gradient

Risk function J
(t)
k Jk ∇Jk

Adjusted Risk X Ĵk ∇Ĵk

Stochastic
Approximation Q

(t)
k X ∇Qk

TABLE I
SUMMARY OF SOME NOTATION USED IN THE PAPER.

Refer to Table 1 for a summary of some notation used
in the paper. Next, we introduce a result that analyses the
perturbation between the gradients of the MAML objective
(2) and the adjusted objective (16). By using this, we will
present our convergence results for both objectives.

Lemma 1 (Gradient perturbation bound). Under assump-
tions 1,3,4, for each agent k, the disagreement between∇Jk(·)
and ∇Ĵk(·) is bounded, namely, for any w ∈ RM :∥∥∥∇Jk(w)−∇Ĵk(w)∥∥∥ ≤ (1 + αL)

αLσG√
|Xin|

+
BασH√
|Xin|

(18)

Lemma 1 suggests that the disagreement between the gra-
dients of the standard MAML objective and the adjusted
objective gets smaller with decreasing inner learning rate α
and increasing inner batch size |Xin|.

Now, we show that the gradient of the adjusted objective has
bounded norm and is Lipschitz in terms of the assumptions
made on the standard loss functions.

Lemma 2 (Bounded gradient of adjusted objective). Under
assumptions 1,3, for each agent k, the gradient ∇Ĵk(·) of the
adjusted objective is bounded, namely, for any w ∈ RM :∥∥∥∇Ĵk(w)∥∥∥ ≤ B̂ (19)

where B̂ , (1 + αL)B is a non-negative constant.

Lemma 3 (Lipschitz gradient of adjusted objective). Under
assumptions 1-3, for each agent k, the gradient ∇Ĵk(·) of
adjusted objective is Lipschitz, namely, for any w, u ∈ RM :∥∥∥∇Ĵk(w)−∇Ĵk(u)∥∥∥ ≤ L̂‖w − u‖ (20)

where L̂ , (L(1 + αL)2 + αρB) is a non-negative constant.

In the following lemma, we derive that the stochastic
MAML gradient has bounded variance.

Lemma 4 (Gradient noise for adjusted objective). Under
assumptions 1-5, the gradient noise defined as ∇Qk(w) −
∇Ĵk(w) is bounded for any w ∈ RM , namely:

E
∥∥∥∇Qk(w)−∇Ĵk(w)∥∥∥2 ≤ C2 (21)

where C2 = 3
|Sk|

(
γ2G(20γ

2
G + 4γG + 9) +

6σ2
G

|Xo|

)
+O(α) is a

non-negative constant. See [1] for the full expression.

1363

Lemma 4 states that the size of the MAML gradient
noise decreases with task-relatedness and task batch-size, and
increases with data variance and inner step-size α.

C. Convergence of Dif-MAML

We define the network centroid as wc,i , 1
K

∑K
k=1wk,i. It

is an average of the agents’ parameters. First, we prove that
agents will cluster around this network centroid in sufficient
number of iterations.

Theorem 1 (Network disagreement). Under assumptions 1-
6, network disagreement between the centroid launch model
and the launch models of each agent k is bounded after
O(logµ) = o(1/µ) iterations, namely:

1

K

K∑
k=1

E‖wk,i −wc,i‖2 ≤µ2 λ22

(1− λ2)2
(
B̂2 + C2

)
+O(µ3) (22)

for

i ≥ 3 logµ

log λ2
+O(1) = o(1/µ) (23)

where λ2 is the mixing rate of the combination matrix A, i.e.,
it is the spectral radius of AT − 1

K1K1
T
K .

Theorem 1 shows that the difference between the centroid
launch model and agent-specific launch models is bounded
after O(logµ) = o(1/µ) iterations. Therefore, we use the
network centroid as a deputy for all models and study the
convergence to the stationary points on that in the next
theorem.

Theorem 2 (Stationary points of adjusted objective). In
addition to assumptions 1-6, assume that Ĵ(w) is bounded
from below, i.e., Ĵ(w) ≥ Ĵo. Then, the centroid launch model
wc,i will reach an O(µ)-mean-square-stationary point in at
most O

(
1/µ2

)
iterations. In particular, there exists a time

instant i? such that:

E
∥∥∥∇Ĵ(wc,i?)∥∥∥2 ≤ 2µL̂C2 +O(µ2) (24)

and

i? ≤

(
2(Ĵ(w0)− Ĵo)

L̂C2

)
1/µ2 +O(1/µ) (25)

A similar result can be obtained for the MAML objective
(2) by using Lemma 1.

Corollary 1 (Stationary points of MAML objective). As-
sume that the same conditions of Theorem 2 hold. Then,
the centroid launch model wc,i will reach an O(µ)-mean-
square-stationary point, up to a constant, in at most O

(
1/µ2

)
iterations. Namely, for time instant i? defined in (25):

E
∥∥∇J(wc,i?)∥∥2 ≤4µL̂C2 +O(µ2) (26)

+ 2

(
(1 + αL)

αLσG√
|Xin|

+
BασH√
|Xin|

)2

Corollary 1 shows that the network centroid reaches an
O(µ)-mean-square-stationary point for sufficiently small inner
learning rate α and for sufficiently large inner batch size |Xin|,
in at most O

(
1/µ2

)
iterations. Note that as µ → 0, when

opposed to the number of iterations required for convergence
(O(1/µ2)), the necessary number of iterations required for
network agreement (O(logµ) = o(1/µ)) becomes negligible.

IV. EXPERIMENTS

In this section, we compare Dif-MAML with the non-
cooperative strategy in which agents learn separate launch
models and the centralized strategy in which all data and
computational power are gathered on a server. In terms of
accuracy/loss performance, the centralized strategy is in fact
equivalent to having a network that is fully-connected because
cooperating agents would reach a consensus at first iteration.
Indeed, we illustrate by simulations in regression and classi-
fication tasks that even with sparsely-connected graphs, Dif-
MAML is able to match the performance of the centralized
strategy and outperform the non-cooperative strategy. Our
experiments and hyperparameters are based on the experiments
and implementation of [2]. They are conducted with neural
networks.

A. Regression

We consider tasks that require regressing the output of a
sine wave. Agents have access to different task distributions.
Namely, the amplitude interval [0.1, 5.0] is evenly partitioned
into K = 40 agents connected with the sparse graph Fig. 1a.
The phases are changing between [0, π] for each agent. The
combination weights are found by the averaging rule [11],
which is simply assigning the same weights to all neighbors.
We use Adam [15] optimizer (µ = 0.001) for the outer-loop.

During training, every 200th iteration, all agents are tested
with the same validation tasks stemming from the amplitude
interval [0.1, 5.0] and the phase interval [0, π]. It can be
seen in Fig. 1b that Dif-MAML matches the centralized
strategy and outperforms the non-cooperative strategy even
with a relatively sparse network topology. This results show
that agents can benefit cooperation even when they have
different task distributions. Furthermore, despite the fact that
we consider stochastic gradient descent (SGD) in this paper,
Fig. 1b supports that our analysis can be extended to other
optimization methods such as Adam.

B. Classification

We use the popular few-shot learning benchmark MiniIma-
genet 5-way 5-shot task [16]. As opposed to the regression
experiment, in classification: (i) agents sample their data
from the same task distribution, (ii) they are allowed to use
multiple updates for adaptation both in training and testing,
(iii) outer-loop optimization is based on SGD (µ = 0.01), (iv)
combination weights are set with Metropolis rule [17], and
(v) convolutional neural networks are used. These differences
are preferred in order to show that Dif-MAML can also be
successful in the listed settings.

1364

(a) (b)

Fig. 1. Regression : (a) 40-agent sparsely-connected network (b) Validation
losses during training

(a) (b)

Fig. 2. Classification: (a) 6-agent network (b) Validation accuracies during
training

The graph underlying the network and the accuracies in
every 50th iteration can be seen in Fig. 2. The agents are
tested on the same tasks. Fig. 2b is averaged over the tasks
and the agents. In accordance with the regression experiment,
diffusion-based decentralized solution can match the central-
ized solution. Moreover, it is performing significantly better
than the non-cooperative solution since effective number of
data each agent processes increases due to cooperation. In
fact, the match between the centralized and decentralized
algorithms is an evidence for the fact that each agent is
processing effectively all data across the network in Dif-
MAML. Even though our theoretical results are based on one
step adaptation as in Eq. 2, the classification results advocate
that they might hold true for multiple step adaptations.

In addition, we note that in order to use Dif-MAML, or
diffusion in general, with neural networks batch normalization
[18] is necessary because the combination step (6b) reduces
the variance of the weights due to averaging.

V. CONCLUSION AND FUTURE WORK

In this paper, we proposed a cooperative and decentralized
meta-learning algorithm with networked agents. Our theoret-
ical analysis of the algorithm established that agents come
to agreement at a linear rate and they proceed to a first-
order stationary-point of an aggregate meta-learning objective.
Experiments with simulated and real data confirm that the pro-
posed fully distributed strategy is able to match the centralized
strategy. Future work might be combining meta-learning with
distributed algorithms that consider asynchronous agents [19]
or agents having multiple local updates before communicating
with their neighbors [20].

ACKNOWLEDGMENT

The authors would like to thank Y. Efe Erginbas for helpful
discussions on the experiments.

REFERENCES

[1] M. Kayaalp, S. Vlaski, and A. H. Sayed, “Dif-MAML: Decentralized
multi-agent meta-learning,” available as arXiv:2010.02870, 2020.

[2] C. Finn, P. Abbeel, and S. Levine, “Model-agnostic meta-learning for
fast adaptation of deep networks,” in Proc. International Conference on
Machine Learning, Sydney, Australia, Aug. 2017, pp. 1126–1135.

[3] A. Nichol, J. Achiam, and J. Schulman, “On first-order meta-learning
algorithms,” available as arXiv: 1803.02999, March 2018.

[4] A. Raghu, M. Raghu, S. Bengio, and O. Vinyals, “Rapid learning or
feature reuse? Towards understanding the effectiveness of MAML,” in
Proc. International Conference on Learning Representations, 2020.

[5] A. Fallah, A. Mokhtari, and A. Ozdaglar, “On the convergence theory
of gradient-based model-agnostic meta-learning algorithms,” in Proc.
International Conference on Artificial Intelligence and Statistics, Aug.
2020, vol. 108, pp. 1082–1092.

[6] K. Gao and O. Sener, “Modeling and optimization trade-off in meta-
learning,” in Advances in Neural Information Processing Systems, 2020,
vol. 33, pp. 11154–11165.

[7] M. Khodak, M.-F. Balcan, and A. Talwalkar, “Adaptive gradient-based
meta-learning methods,” in Advances in Neural Information Processing
Systems 32, pp. 5917–5928. Vancouver, Canada, Dec. 2019.

[8] Y. Jiang, J. Konecný, K. Rush, and S. Kannan, “Improving federated
learning personalization via model agnostic meta learning,” available
as arXiv:1909.12488, Sep. 2019.

[9] A. Fallah, A. Mokhtari, and A. Ozdaglar, “Personalized federated
learning with theoretical guarantees: A model-agnostic meta-learning
approach,” in Advances in Neural Information Processing Systems, 2020,
vol. 33, pp. 3557–3568.

[10] F. Chen, M. Luo, Z. Dong, Z. Li, and X. He, “Federated meta-learning
with fast convergence and efficient communication,” available as arXiv:
1802.07876, Feb. 2018.

[11] A. H. Sayed, “Adaptation, learning, and optimization over networks,”
Foundations and Trends in Machine Learning, vol. 7, no. 4-5, pp. 311–
801, July 2014.

[12] J. Chen and A. H. Sayed, “On the learning behavior of adaptive networks
- Part I: Transient analysis,” IEEE Transactions on Information Theory,
vol. 61, no. 6, pp. 3487–3517, June 2015.

[13] S. Vlaski and A. H. Sayed, “Diffusion learning in non-convex envi-
ronments,” in Proc. of IEEE ICASSP, Brighton, UK, May 2019, pp.
5262–5266.

[14] S. Vlaski and A. H. Sayed, “Distributed learning in non-convex
environments—Part I: Agreement at a linear rate,” IEEE Transactions
on Signal Processing, vol. 69, pp. 1242–1256, 2021.

[15] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
in Proc. International Conference on Learning Representations, San
Diego, CA, USA, May 2015.

[16] S. Ravi and H. Larochelle, “Optimization as a model for few-shot learn-
ing,” in Proc. International Conference on Learning Representations,
Toulon, France, April 2017.

[17] N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, and
E. Teller, “Equation of State Calculations by Fast Computing Machines,”
The Journal of Chemical Physics, vol. 21, no. 6, pp. 1087–1092, June
1953.

[18] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep net-
work training by reducing internal covariate shift,” in Proc. International
Conference on Machine Learning, 2015, vol. 37, p. 448–456.

[19] X. Zhao and A. H. Sayed, “Asynchronous adaptation and learning over
networks – Part II: Performance analysis,” IEEE Transactions on Signal
Processing, vol. 63, no. 4, pp. 827–842, Feb 2015.

[20] J. Wang and G. Joshi, “Adaptive communication strategies to achieve
the best error-runtime trade-off in local-update sgd,” Proc. Machine
Learning and Systems 1, pp. 212–229, 2019.

1365

