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Abstract—Self size-estimating feedforward network (SSFN) is
a feedforward multilayer network. For the existing SSFN, a
part of each weight matrix is trained using a layer-wise convex
optimization approach (a supervised training), while the other
part is chosen as a random matrix instance (an unsupervised
training). In this article, the use of deterministic transforms
instead of random matrix instances for the SSFN weight ma-
trices is explored. The use of deterministic transforms provides
a reduction in computational complexity. The use of several
deterministic transforms is investigated, such as discrete cosine
transform, Hadamard transform, Hartley transform, and wavelet
transforms. The choice of a deterministic transform among a
set of transforms is made in an unsupervised manner. To this
end, two methods based on features’ statistical parameters are
developed. The proposed methods help to design a neural net
where deterministic transforms can vary across its layers’ weight
matrices. The effectiveness of the proposed approach vis-a-vis the
SSFN is illustrated for object classification tasks using several
benchmark datasets.

Index Terms—Multilayer neural network, deterministic trans-
forms, weight matrices.

I. INTRODUCTION

Over the past decade, the field of machine learning is en-
riched with appropriately trained neural network architectures
such as deep neural networks (DNNs) [1] and convolutional
neural networks (CNNs) [2], outperforming the classical meth-
ods in different classification and regression problems [3],
[4]. However, this impressive progress has come with a cost–
it has made machine learning strictly reliant on extensive
computational resources such as parallel computations using
graphical processing units (GPUs).

There exist two main classes of algorithms that try to
address the high computational complexity requirements of
modern neural networks. The first class of algorithms tries to
preserve the state-of-the-art performance of famous architec-
tures, such as ResNet [5] and AlexNet [2], while reducing
the size of the network as much as possible. EfficientNet
[6], SqueezeNet [7], and MobileNet [8] are examples of this
kind. However, training of the above architecture is still quite
expensive due to the use of stochastic gradient descent and
backpropagation [9]. The second class of algorithms tries to
resolve this issue by using a gradient-free training approach.
To this end, one popular technique is that some of the weight
matrices of the network are set to instances of random matrices
and only the rest of the weight matrices are updated during
training. This leads to a convex relaxation of the training cost

and eliminates the need for error backpropagation throughout
the layers. Extreme learning machine (ELM) [10], random
vector functional link (RVFL) and its variants [11], [12], pro-
gressive learning network (PLN) [13], and self size-estimating
feedforward network (SSFN) [14] are examples of this class
that are shown to provide competitive performance with very
low computational requirements in various applications.

Article contribution: it is investigated the prospect of using
deterministic transforms, such as discrete cosine transform
(DCT), instead of random matrices in the weights of a neural
network. Particularly, the focus relies on SSFN architecture
which uses a combination of random matrices and layer-
wise training to guarantee a monotonically decreasing training
cost as the number of layers increases. Two methods are
used to find the best deterministic transform in each layer of
the network: (1) features standard deviation and (2) singular
values of the correlation matrix. It is shown that both methods
provide similar performance to the case of random matrices
over several benchmark classification datasets. The use of
deterministic transform reduces the computational complexity
of matrix multiplication in each layer of the network and
has been explored in other neural network architectures as
well, such as scattering networks [15] and transformer encoder
architecture [16]. Further, the use of deterministic transforms
allows limited learning of few parameters in the neural net-
work, makes it suitable for a data-limited scenario.

II. PRELIMINARIES

A. Deterministic Transforms

In this manuscript, the term deterministic transforms (DT)
is used to refer to discrete linear transforms used signal
processing tasks. Only real transforms in one dimension are
considered, such as discrete cosine transform (DCT) and
discrete wavelet transform (DWT). They are expressed as
linear functions and the following matrix notations are used

y = WDTx , wDT (x) (1)

where WDT ∈ RN×N , wDT (·) ∈ RN → RN , and x ∈ RN
and y ∈ RN are respectively the input and output signal. It is
worth noting that the main advantage of using deterministic
transforms is a reduction in computational complexity. While
a matrix-vector multiplication has a computational cost of
O(N2), it is possible to be reduced to O(Nlog2N) [17], [18],
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or even O(N) [19], [20], by efficiently implementing each
specific deterministic transforms.

B. Self Size-estimating Feed-Forward Network

In this Section the training of SSFN architecture, shown
in Figure 1, is quickly reviewed. Consider the signal flow
between l’th layer and the network input as

yl = g(Wlyl−1) = g(Wl...g(W2g(W1x))...) ∈ Rnl , (2)

where Wl ∈ Rnl×nl−1 is the weight matrix of l’th layer
with nl hidden neurons and g(·) is ReLU activation function.
The network is built using a layer-wise approach with convex
optimization along with the use of random matrix instances to
ensure a monotonically decreasing training cost. A new layer
is added on top of the previously optimized structure and is
optimized as follows:

1) Consider the training dataset D = {(x(j) ∈ RP , t(j) ∈
RQ)}Jj=1. The l’th layer output is computed as in (2).

2) The output matrix Ol is computed by using alternating-
direction-method-of-multipliers (ADMM) by solving the
following optimization problem

O?
l = argmin

O
Cl s.t. ||O||2F ≤ εl, (3)

where Cl = 1
J

∑J
j=1 ||t(j) − t̃

(j)
l ||2 defines the training

cost and t̃
(j)
l = Oly

(j)
l the prediction of j’th sample.

Here, εl = 2αQ denotes the regularization parameter with
1 ≤ α. Refer to [14] for more details.

3) The weight matrix of (l + 1)’th layer is constructed as

Wl+1 =

[
VQO

?
l

Rl+1

]
=

[
VQO

?
l

Wpart2,l+1

]
, (4)

where VQ = [IQ − IQ]
T ∈ R2Q×Q and Rl+1 refers to

the computed random matrix instance. To ease general-
ization, the bottom part will be referred as Wpart2,l+1.

This procedure is carried until the maximum number of
layers Lmax is reached or the cost shows a saturation trend,
C∗l −C

∗
l−1

C∗l−1
< ηlayer with ηlayer being a predefined threshold.

Note that this layer-wise approach avoids dealing with prob-
lems such vanishing gradients or local minima while ensuring
a reduction of the cost. In [14] it is shown that due to the use
of VQ matrix and lossless flow property (LFP) of ReLU, the
training of SSFN leads to Cl ≤ Cl−1.

III. PROPOSED LEARNING SCHEME

Note that SSFN guarantees monotonic reduction of the
training cost for any choice of the matrix Wpart2,l+1, whether
being a random instance or not. In the article is proposed
to replace the random matrix in equation (4) with a suitable
deterministic transform. Thereby it is still possible to use the
advantages of LFP of ReLU activation while incorporating
the low computational complexity benefits of deterministic
transforms. Lets denote the weight matrix (4) as a linear
transform block

LTl(·) =
[

VQO
?
l−1

wDT,l(·)

]
, (5)

where wDT,l(·) represents a deterministic transform in l’th
layer. Note that LTl(·) and wDT,l(·) are represented in
function notation instead of matrix, to emphasize that is
not necessarily implemented as a matrix multiplication, with
O(N2) complexity.

To differentiate among the upper and lower parts of the
linear transform output, it is expressed as

zl =

[
zpart1,l
zpart2,l

]
=

[
VQO

?
l−1yl−1

zpart2,l

]
, (6)

and the layer output yl = g(zl).

Remark 1. The use of ReLU as activation function g is a
necessary condition to preserve LFP, albeit it is only necessary
to be applied in the upper part zpart1,l. Therefore, it is possible
to use any other function as activation for zpart2,l.

Following the SSFN training, first, the layer output matrix
O?
l is learned by alternating direction method of multipliers

(ADMM) and zpart1,l is obtained. The second part of the lin-
ear transform zpart2,l is computed following an unsupervised
approach, by the proposed Algorithm 1. It defines the learning
procedure to choose the most suitable transform to be used at
each layer, among all other deterministic transforms available
in a predefined bag formed by T different transforms.

Remark 2. Many deterministic transforms e.g., discrete co-
sine transform, discrete sine transform, Hartley transform,
among others are squared matrices. Furthermore, some as
Haar transform and Walsh-Hadamard transform are square
transforms and its associated dimensions are integers of power
of 2. The transform concatenation in equation (5) makes
the network width (number of hidden neurons) monotonically
increasing as the network gets deeper. To cope with this issue,
node pruning based on node variance σn is necessary. The
variance of a single node n is defined as,

σ2
n =

1

J

J∑
j=1

(z(j)n −
1

J

J∑
k=1

z(k)n )2, n = 1, 2, ..., Nl, (7)

with z(j) =
[
z
(j)
1 , ..., z

(j)
n , ..., z

(j)
Nl

]
= z

(j)
part2,l.

For each of the transforms wDT,l(·) within the bag, the
output is calculated as

zpart2,l =
p(wDT,l(yl−1))

||p(wDT,l(yl−1))||
, (8)

where p(·) is defined as a pruning function that remove the
nodes presenting low variance σ2

n < ηvar, with ηvar being a
variance predefined threshold and σ2

n as defined in (7). The
normalization step is needed to arrest energy increase of signal
flow through the successive layers. These two operations are
critical to achieve a stable behavior for the training algorithm.

Two different methods have been developed to chose, in an
unsupervised way, which deterministic transform from the bag
must be used at each layer. The methods assign a score sc1
based on different properties of its input signal zpart2,l (8).
The score is used to compare different transforms and choose
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Fig. 1. The architecture of a multi-layer SSFN with L layers and its signal flow diagram. LT stands for linear transform, and NLT stands for non-linear
transform (activation function). ReLu is used as activation function.

Algorithm 1 : Unsupervised learning of deterministic trans-
forms
Input:

1: yl−1 (Input of l’th layer)
2: ηvar (Variance threshold)
3: Bag of deterministic transform: DTi with i = 1, 2, ..., T
4: γ (Method 2 hyperparameter, in (11))

Estimation of a suitable deterministic transform:
1: for i = 1 : T do
2: wDT,i = DTi (Choose i’th DT in the bag)
3: Compute zpart2,l according to (8)
4: Apply Method1 (III-A) or Method2 (III-B)
5: end for
6: wDT,l ← argminDTi

(sc1) (Choose DT with min sc1)

Output:
1: wDT,l

a suitable one in each layer following the decision criterion in
step 6 in Algorithm 1.

A. Method 1: Standard deviations

Variability in layer nodes give an insight about the amount
of information each node handles [21]. Nodes standard de-
viation σn is computed by square root of equation (7). Then
standard deviation over all nodes σT is computed and the score
is set as

sc1 = σT (9)

When choosing the minimum sc1 among all the transforms,
the deterministic transform is chosen whose information is
distributed more evenly among all the nodes. One must note
that nodes carrying a small amount of information do not exist
since low variance nodes have been removed previously in (8).

B. Method 2: Singular values of cross-correlation matrix

In order to measure the information shared between network
input x and linear transform output zpart2,l, “network input-
layer output” correlation matrix is computed as Rx,z =

Cx,z√
Cx,x∗Cz,z

where Cx,z denotes the covariance matrix be-

tween x and z, denoting zpart2,l = z for simplicity. Principal
component analysis (PCA) is then implemented to the correla-
tion matrix Rx,z, obtaining the corresponding singular values
λk, 1 ≤ k ≤ K, with K being the total number of singular
values and dimension of Rx,z. The singular values λk are

Fig. 2. Example of correlation eigenvalue curve in black. In red, the first
cumulative value higher than the threshold (in green) and its designated scores.
In blue, a line corresponding to if the signals were uncorrelated.

sorted in descend order to define the cumulative singular value
as

Cλ(k) =

∑k
i=1 λi∑K
i=1 λi

where 0 ≤ Cλ(k) ≤ 1. (10)

The interest relies on the deterministic transform that presents
a greater value of cumulative singular values in fewer com-
ponents, meaning that both signals share a greater amount
of information. Score sc1 is defined as the minimum index
idx for which the information is higher than a threshold
0 ≤ γ ≤ 1, acting as a hyperparameter. It may be the case that
different transforms share the same index and therefore sc1. To
cope with this problem a second sc2 is introduced, choosing
the one that shares the highest amount of information within
these coefficients.

idx = argmin
k

(Cλ(k) ≥ γ),

sc1 = 100× idx

K
, and sc2 = Cλ(idx),

(11)

where K is used to avoid influence of different signal lengths
presented by the different transforms output. In case of tie, the
decision criterion is to chose the transform is defined as

wDT,l ← min(sc1), max(sc2). (12)

A visual representation of both scores is shown in Figure 2.

IV. EXPERIMENTAL EVALUATIONS

Carried experiments will compare the performance of the
proposed methods to SSFN using random weights in [14],
on seven different classification datasets. These datasets are
chosen due to their popularity in literature and level of com-
plexity for tasks. Vowel dataset belongs to speech recognition
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TABLE I
CLASSIFICATION ACCURACY OF SSFN ACROSS 50 MONTE-CARLO SIMULATIONS AND COMPLEXITY COMPARISON BETWEEN RANDOM INSTANCE AND

DETERMINISTIC TRANSFORM EXECUTIONS. PARAMETERS SET WITH MINIMUM MANUAL EFFORT: kmax = 100, α = 2, ηlayer = 0.1, ηvar = 10−7 ,
Lmax = 20, A BAG OF T = 11 DIFFERENT TRANSFORMS AND METHOD2 HYPERPARAMETER γ = 0.8.

Dataset
Rand SSFN Deterministic Transform SSFN

Accuracy (in %) (avg. ± std. dev) Accuracy (in %) (avg. ± std. dev) Parameters to set

Train dataset Test dataset Method1 Method2 λ0 µ

Train dataset Test dataset Train dataset Test dataset

Vowel 100 ± 0 60.2 ± 2.4 99.62 64.72 93.75 63.42 101 103

Satimage 95.55 ± 0.15 89.9 ± 0.5 91.41 89.15 93.62 89.15 106 108

Caltech101 99.51 ± 0.06 76.1 ± 0.8 99.95 ± 0.02 76.73 ± 0.82 99.93 ± 0.02 76.39 ± 0.67 3 10−2

Letter 99.02 ± 0.07 95.7 ± 0.2 100 ± 0 92.72 ± 0.3 95.43 ± 0.12 91.07 ± 0.42 10−5 109

NORB 99.11 ± 0.04 86.1 ± 0.2 98.22 84.75 100 87.46 102 104

Shuttle 99.73 ± 0.08 99.8 ± 0.1 99.8 99.76 99.96 99.84 105 107

MNIST 97.21 ± 0.03 95.7 ± 0.1 97.32 96.54 98.09 96.9 1 104

while the others belong to image classification. Vowel dataset
has a highly limited training data size (a data-limited training
scenario). Train and test dataset partitions are created using
random sampling for Caltech101 and Letter datasets. For the
remaining five datasets, train and test dataset partitions are
already predefined.

A bag of T = 11 different deterministic transforms is used
to train the network, DTi with i = 1, .., T , all of them widely
used in signal, image and audio processing, filtering, signal
coding, among other applications. These transforms are listed
below with its abbreviations and computational complexity
when computed by its fast algorithms [17]:
• Discrete cosine and sine transforms (DCT-II and DST-I):

complexity O(Nlog2N).
• Fast Walsh-Hadamard Transform (FWHT1 indicates the

coefficients are in normal Hadamard order while FWHT2
they are in order of increasing sequency value): complex-
ity O(Nlog2N).

• Discrete Hartley Transform (DHT): O(Nlog2N).
• Discrete Haar transform (Haar): complexity O(N).
• Different wavelet transforms (Daubechies 4 (DB4) and

20 (DB20), Symlets 2 (sym2), Coifflets 1 (coif1),
Biorthogonal 1.3 (bior1.3) and Reverse Biorthogonal 1.1
(rbior1.1)): Complexity O(N).

Note that the decomposition level in wavelet transforms
has been set regardless of the boundary effects, equal to
b(log2(N))c, where N is the length of the input signal or
previous layer nodes. For wavelet outputs, all the obtained
coefficients, approximation and detail, are concatenated.

When using the second method proposed there is an extra
hyperparameter that needs to be set in (11). It has been set
equally for all datasets as γ = 0.8.

A. Experimental results

First, both methods’ performances are compared against that
achieved by SSFN with random weights in [14] (called Rand
SSFN here). Parameter tuning and results in terms of accuracy
are reported in Table I. Minimal effort has been put into tuning

Fig. 3. Training and testing accuracy curves of vowel dataset with ηlayer =
0.05. In red using random instances as in [14] and in blue using deterministic
transforms.

the parameters and only two have been carefully tuned. The
parameter λ0 is used to control the regularized LS used to
obtain the output matrix in the first layer O∗0. The choice of µ
influences the convergence of ADMM to optimize the output
matrices of the successive multi-layer structure. Both of them
are tuned carefully by a combination of cross-validation and
manual effort. The rest of the hyperparameters of the network
are states in the caption of Table I.

The performances presented in Table I, both in training
and testing, are close to the presented by SSFN with random
weights. One must note that the standard deviation reported
for the accuracy of Letter and Caltech101 datasets is due
to random picking of train and test set in different Monte-
Carlo experiments. For the other five datasets, train and test
sets are predefined, and therefore, there is no randomness
observed when using deterministic transforms during training.
As an example, it is also compared the performance of SSFN
throughout the layers in Figure 3 for the Vowel dataset. Similar
behaviour and consistency it is achieved in both cases, proving
the effectiveness of the proposed approach.

In Table II the constructed network architectures built by
using Method 2 are shown. Similar results are achieved by
Method 1 as well. Table II shows the number of nodes per layer
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TABLE II
MONTE-CARLO TRIALS OF SSFN WITH DETERMINISTIC TRANSFORMS

APPLYING METHOD2.

Dataset
Nodes arrangement

Accuracy
(Deterministic Transform layout)

Vowel
136-355-370-332-324

63.42
(DB20-DB20-DB20-DB20-DB20)

Caltech101

4096-558-1108-2170
76.4

(FWHT2-DB20-FWHT1-FWHT2)
4096-557-1110-2162

76.5
(FWHT2-DB20-FWHT2-FWHT1)

4096-556-1107-2157
76.16

(FWHT2-DB20-FWHT2-FWHT1)

Letter

224-454-441-451-458-464
91.78

(DB20-DB20-DB20-DB20-DB20-DB20)
224-454-441-452-457-469

91.11
(DB20-DB20-DB20-DB20-DB20-DB20)

224-454-442-454-455-464
91.39

(DB20-DB20-DB20-DB20-DB20-DB20)

MNIST
1044-2038-1998-1931-1789

96.9
((FWHT1-FWHT2-DST-DST-FWHT2)

along with the deterministic transforms chosen in each layer
and their corresponding test accuracy for different Monte-
Carlo trials. For Vowel and MNIST datasets, the accuracy and
architecture do not change in different trials due to having
predefined train sets. For Letter dataset, even though the
number of layers varies among executions, it does not affect
the chosen transform, being DB20 in all cases. For Caltech101
dataset, the deterministic transforms chosen across executions
are consistent, only differ the type of ordering for FWHT.
Also, the number of layers remains equal for all the executions,
presenting all of them a similar node structure.

Finally, properly tuning the parameters, as variance thresh-
old ηvar, can provide a further improvement in computational
cost and perhaps in performance. By hand-tuning the threshold
variance ηvar = 10−6 for Caltech101 dataset, the network new
accuracy is 76.25 ± 0, 84, being ‘392-504-656-1125 (DB20-
DB20-DCT-FWHT2)’, where the number of neurons has been
reduced considerably. To illustrate how the computational
cost is reduced, consider an input dimension to l’th layer
as Nl = 28 = 256 nodes. The computational cost by the
normal matrix-vector product, considering the matrix squared,
is N2

l = 65.546 operations, while with fast algorithms is
Nllog2Nl = 2.048 and Nl = 256. The computations reduction
is so significant that even with input nodes Nl = 212, fast
algorithms are less expensive.

V. CONCLUSIONS

It has been shown that it is possible to employ deterministic
transforms in the weight matrices of a multilayer neural
network and achieve competitive classification performance
on different datasets. Criterion such as features standards
deviations and singular values of cross-correlation matrix
between the input and output of the transform provides useful
information about the power of deterministic transforms in a
neural network. In this way, a new learning approach can be

achieved as a hybrid combination of supervised and unsuper-
vised learning in each layer of the network. The use of deter-
ministic transforms reduces the computational complexity of
matrix multiplication at the time of testing, making it suitable
for applications with real-time or low-latency requirements.
Besides, the use of deterministic transforms may provide an
understanding of interpretability/explainability, and bring new
insights about the information flow within layers of a neural
network.
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