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Abstract—We describe a multi-source and unsupervised do-
main adaptation method using Sinkhorn barycenters, which,
given the labeled data in multi-source domains and unlabeled
data in a target domain, uses the optimal transport Sinkhorn
distance to measure gaps between data distributions in the source
and target domains. For end-to-end classification learning, the
feature extractor and classifier are simultaneously estimated on
the basis of two criteria: the minimization of the Sinkhorn
distance for the source and target domains and the minimization
of the classification loss for the source domains. The first criterion
is based on the assumptions that domain-invariant features would
be captured in a latent feature space obtained by minimizing
the Sinkhorn distance among all domains and that the space
would be close to the Sinkhorn barycenter. Experiments on image
classification using the Digit-Five dataset, which is comprised of
digit datasets from five different domains, demonstrated that our
method outperforms other state-of-the-art methods.

Index Terms—unsupervised domain adaptation, multi-domain
adaptation, optimal transport, Sinkhorn distance

I. INTRODUCTION

Various kinds of data, such as image and speech data,
from various sources are being collected and accumulated via
the Internet and various devices. These data have different
characteristics depending on the data source, making it difficult
to combine and use them. Technology is thus needed for
effectively utilizing multi-source data.

There are various strategies for dealing with multi-source
data. In the multi-view/multi-source paradigm, one strategy
is to transform multi-view/multi-source data into a target
domain (to be learned) so that subsequent learning tasks
can be performed in the target domain. This strategy has
been successful, for example, in the context of multi-view
clustering, such as multi-view matrix factorization [1], [2],
multi-view K-means clustering [3], multi-view kernel learning
[4], and multi-view spectral clustering [5].

Strategies are being actively studied for unsupervised do-
main adaptation (DA), which utilizes the knowledge of the
source domain(s) to perform tasks in an unlabeled target
domain, such as classification of unlabeled data. Research has
mostly addressed the use of a single-source domain. Several
methods use loss functions based on generative adversarial
networks to reduce domain confusion and to estimate the
joint distribution [6] and domain-invariant features [7]. An-
other commonly used approach to unsupervised DA involves
bringing the data distributions of the source and target domains

closer together and leveraging the source domain’s rich knowl-
edge regarding label information to improve classification
performance in the target domain.

Several types of distance measures between two domains
have been investigated, e.g., second order correlation [8], [9],
moment matching [10], maximum mean discrepancy (MMD)
[6], [7], [11]–[14], Kullback-Leibler divergence [15], and H-
divergence [16].

The success of single-source DA approaches has prompted
interest in exploring domain adaptation for multi-source sce-
narios. Multi-source DA (MDA) extends the single-source
setting to a framework in which labeled data from multiple
sources with different distributions can be aggregated. Var-
ious methods have been proposed for MDA, e.g., H∆H-
divergence between a weighted combination of multi-source
domains [16], a method using a joint adaptation network [11],
and a method using a deep cocktail network [17].

The key idea of MDA for multiple domains with diverse
characteristics is to use constraints based on the distances
among the domains in order to relax the gaps among the
domain distributions. The most important thing when using
the constraints is measuring the distances among the distri-
butions. Peng et al. [18] proposed using moment matching
and demonstrated that such a method outperformed ones using
single-source and multi-source approaches, such as Long et al.
[11] and Xu et al. [17]. However, with the method of Peng
et al. [18], only a limited number of moments among the
distributions are matched, so further study is necessary for
relaxing the gaps among the distributions.

Optimal transport (OT) is attracting much attention as a
promising and flexible solution to the problem of comparing
probabilistic densities when measuring distances among dis-
tributions. OT-based methods for comparing two probability
densities and generative models are vital in machine-learning
research, where data are often presented in the form of point
clouds, histograms, bags-of-features, or, more generally, even
manifold-valued datasets. The methods initially investigated
were aimed at solving the problem of optimally allocating
a transportation source’s data distribution to a destination (so
that the transportation cost was minimized). Unfortunately, the
strength of OT comes at an enormous computational cost,
the cost of solving the OT problem, which is impractical
for large-scale applications. Approximation or good solutions
of the OT problem have been actively studied. One solution
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is the Kantorovich-Rubinstein dual formulation. Li et al.
[19] proposed using an OT-based measure, the Wasserstein-
1 distance, for MDA, which is facilitated by the use of the
dual formulation and approximation with a neural network.
Another approximation approach to gap relaxation between
data distributions [20]–[22] is to use the generalized Sinkhorn
distance based on OT with entropy-type regularization. This
approach has a reasonable calculation cost and has been widely
used in computer vision, natural language processing, gene
analysis, and so on.

This study introduces the OT-induced Sinkhorn distance
with a fast and scalable algorithm to MDA. Our contributions
are
• introducing the use of the OT-induced Sinkhorn distance

to measure the closeness of datasets while taking data
distributions into account;

• presenting a loss function combining cross-entropy loss
for classification purposes and the loss of the pair-
wise OT distance among the source domains and target
domain.

Experiments on using MDA for digit classification under the
same experimental conditions as those used by Peng et al. [18]
demonstrated that the proposed method performs better than
a state-of-the-art DA method [18], [19].

II. MULTI-SOURCE DOMAIN ADAPTATION MODEL WITH
SINKHORN BARYCENTER

A. Problem Formulation

1) Overview: Let us consider a classification problem in
target domain T without labeled data when labeled data in N
source domains {S1,S2, . . . ,SN} are available. In the source
domain with labeled data Sn, the data can be mapped to
a latent feature space Ŝn for classification using the label
information. However, for the target domain without labeled
data, data need to be mapped to the latent space without the
label information. The MDA methods seek a model M0 to
map data in the target domain T to the latent feature space
T̂ by effectively using knowledge in the source domain with
labels:

M0 : T |{S1,S2, . . . ,SN} → T̂ . (1)

For N = 1, i.e., data in only one source domain is available,
one may consider mapping the target domain T̂ close to the
source domain Ŝ1 where the label information can be useful.
For N > 1, i.e., multi-source setting, the key is how to handle
the relationship between the data in each domain to estimate
T̂ . In many studies, the relationship among domains has been
formulated and measured as the distance between distributions,
such as moment matching [10], maximum mean discrepancy
(MMD) [6], [7], [11]–[14]. In this paper, we measure the
relationship among domains based on Sinkhorn distance [20]–
[22] and estimate the latent feature space T̂ as a barycenter
B̂ in a Wasserstein space [23], i.e., T̂ is estimeted minimizing
Sinkhorn distance between T̂ and Ŝn,

B = argminT̂
∑
n

OTε{Sn, T̂ } (2)

where OTε() is the Sinkhorn distance based on the OT distance
with entropic regularization.

2) Model Components: Model MS is represented as a
feature extractor fθf , and parameter θf is estimated by consid-
ering classifier gθg for each domain of {S1,S2, . . . ,SN , T }.
When using deep neural networks, each pair component can
be embedded in a network, and the structure can be shared
among all domains.

fθf : Xn → Zn (3)
gθg : Zn → Yn, (4)

where Xn is data in the n-th domain, Zn the latent feature, Yn

the labels, and θ = (θf , θg) the parameter set of the feature
extractor and classifier. For domain T (that is, the (N + 1)-th
domain), the values of YN+1 are unknown.

Then, the parameter θ̂ is estimated so as to minimize loss
function L:

θ̂ = argmin
(θf ,θg)∈Θ

L({fθf (Xn)}N+1
n=1 , {gθg (Zn)}Nn=1, {Yn}Nn=1).

(5)
3) Loss Function: An important factor in the above model

assumption is defining an appropriate loss function. The loss
should satisfy two major criteria; (1) it should measure the
classification capability, and (2) it should measure the close-
ness of the source and target domains in the latent feature
space.

We propose a loss function that meets both criteria. It uses
the Sinkhorn distance (SD) as the loss between the domains
(lSD) and uses cross-entropy (CE) as the classification loss for
the source domains (lCE):

L({fθf (Xn)}N+1
n=1 , {gθg (Zn)}Nn=1, {Yn}Nn=1) (6)

= lCE({gθg (Zn)}Nn=1, {Yn}Nn=1) + λ · lSD({fθf (Xn)}N+1
n=1 ),

where λ is a weight for regulating the scale of the difference
between SD and CE. While lCE is well-known, especially in
the context of deep neural networks [24], we define lSD for
multi-source DA:

lSD({fθf (Xn)}N+1
n=1 ) =

1− α
N

N∑
n=1

OTε(fθf (Xn), fθf (XN+1))

+
α(
N
2

) N∑
i6=j

OTε(fθf (Xi), fθf (Xj))).

(7)

The first term corresponds to Eq. (2), which itself can be
used to estimate the barycenter, but the proposed method also
uses the second term, the OT distance between the source
domains. The second term follows the loss function of MDA
method with moment matching [18]. The parameter α is a
weight parameter, where if α = 0, Eq. (7) is consistent
with Eq. (2). The effect of α on performance is shown in
the experiment section. The purpose of minimizing loss lSD
is to bring together all the transformed source/target domain
datasets, where the closeness between each pair is represented
by the OT distance with entropic regularization such that, in
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reality, the data distributions are matched. This differs greatly
from general domain adaptation in which the data are trans-
formed into the latent feature space without considering their
precise distribution matching. In the algorithm implementation
specified in the next section (Eq. (11)), the loss function is
calculated in terms of batch data.

B. Training Procedure

The procedure for training the network parameters is shown
in Algorithm 1. We use a single feature extractor fθf and a
classifier gθg that are shared in all domains. Parameters θf
and θg are estimated by stochastic gradient descent (SGD) to
minimize Eq. (5).

First, mini-batch from each source domain are sampled:
{xni ,yni }

B
i=1 ∼ (Xn,Yn). Here, xni represents image data

in the n-th domain, and yni represents the d-dimensional
one-hot vector for the class of xni . In the experiments, the
size of xni was 28 × 28, and the dimension of yni was 10.
Each image data is fed into the feature extractor, and fea-
ture

{
zni = fθf (xni )

}B
i=1

is obtained. The extracted features
{zni }

B
i=1 are classified by class

{
ỹni = gθg (zni )

}B
i=1

. Here, ỹni
is a d-dimensional vector, and each element represents the
probability of the corresponding class. The CE loss for each
mini-batch is calculated:

lCE({gnθg (Zn)}Nn=1, {Yn}Nn=1) =
∑
n l
n
CE (8)

lnCE = 1
B

∑B
i=1

∑9
c=0 y

n
i,c log ỹni,c. (9)

Next, mini-batch data in the target domain
{
xN+1
i

}B
i=1
∼

XN+1 is sampled and fed into the feature extractor to obtain
target features

{
zN+1
i

}B
i=1

. To calculate the OT distance
between the n-th and m-th domains in Eq. (7), we solve the
OT problem by using an entropic regularization term:

OTε

(
{zni }

B
i=1 ,

{
zmj
}B
j=1

)
= min

P
〈P,M〉 − εH(P ), (10)

where M is a metric matrix with elements mi,j =
∣∣zni − znj

∣∣2,
and P is a joint probability matrix with elements pi,j =
p(zni , z

n
j ). The 〈·, ·〉 represents the Frobenius norm, and P

is the plan for transporting the batch data from the n-th
domain into the m-th domain. The OT problem in Eq. (10) is
practically solved using

OTε

(
{zni }

B
i=1 ,

{
zmj
}B
j=1

)
= 〈P̂ ,M〉 (11)

=
∑B
i=1

∑B
j=1

∣∣zni − zmj
∣∣2 · p̂(zni , zmj ),

where P̂ is the transport plan estimated using the Sinkhorn
algorithm [25].

Finally, the proposed loss in Eq. (6) is obtained from the
CE and the SD, and the network parameters are updated by
minimizing the loss by using SGD.

III. EXPERIMENTS

A. Experimental Setting

We used the Digit-Five dataset [18], which comprises five
digit-recognition-benchmark datasets; MNIST [26], MNIST-

Algorithm 1 Procedure for training network parameters
Input: (Xn,Yn) in the N source domains and XN+1 in
the target domain
Parameters: network parameters θf and θg
Hyper-parameters: mini-batch size B, weight parameters
λ (Eq. (6)) and α (Eq. (7))
while not converged do

for each source domain n ∈ 1, ..., N do
Sample mini-batch {(xn,yn)}Bi=1 ∼ (Xn,Yn)

Extract features
{
zni = fθf (xni )

}B
i=1

Classify features
{
ỹni = gθg (zni )

}B
i=1

Calculate cross-entropy (Eq. (8))
end for
Sample mini-batch in target domain {xN+1

i }Bi=1 ∼
XN+1

Extract target features
{
zN+1
i = fθf (xN+1

i )
}B
i=1

Calculate Sinkhorn distance (Eqs. (7) and (11))
Calculate total loss (Eq. (6))
Update network parameters (θf , θg) by using stochastic
gradient descent (Eq. (5))

end while

MNIST

MNIST

SVHN

USPS

SYN

MNIST

SVHN

USPS

SYN

MNIST-M

Fig. 1. Five-Digit dataset

M [27], SVHN1, USPS2 and SYN [28]. The Digit-Five dataset
consists of training and testing sets. We split the validation
datasets in half and used them for testing and validation.

The characteristics of each dataset differed, and for MNIST-
M and SVHN in particular, visually distinguishing the num-
bers was difficult. We conducted experiments with one of the
five datasets as the target domain in turn and the other four
datasets as the source domains.

For the model with the loss in Eq. (6), we used the same
network architecture that was used by Peng et al. [18]. The
network is composed of three convolution layers and three
fully connected layers. The first five layers are for feature
extraction, and the last layer is for classification. To implement
the Sinkhorn algorithm, we used the GeomLoss toolkit [29].
The batch size for each domain was set to 128.

B. Main Results: Comparison with State-of-the-Art Methods

Table I lists the average classification accuracy of digit
recognition in the target domain and its standard deviation

1http://ufldl.stanford.edu/housenumbers/
2https://www.openml.org/d/41070
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TABLE I
CLASSIFICATION ACCURACY (%) OF PROPOSED METHOD AND THREE CONVENTIONAL METHODS (M3SDA [18], WASSERSTEIN-1 [19], AND MMD).

Target Proposed M3SDA Wasserstein-1 MMD
ε = 0.01 ε = 0.1 ε = 1.0 [18] [19]

MNIST 98.7 ± 0.03 98.8 ± 0.05 98.7 ± 0.03 98.7 ± 0.11 98.5 ± 0.09 97.8 ± 0.12
MNIST-M 69.4 ± 0.27 69.4 ± 0.20 69.3 ± 0.28 65.3 ± 0.37 68.9 ± 0.18 65.7 ± 0.07
SVHN 74.5 ± 0.04 74.6 ± 0.19 74.6 ± 0.29 73.3 ± 0.34 73.2 ± 0.21 71.9 ± 0.40
USPS 97.1 ± 0.05 97.3 ± 0.05 97.3 ± 0.05 97.0 ± 0.19 97.1 ± 0.11 95.5 ± 0.10
SYN 86.6 ± 0.57 87.0 ± 0.52 87.0 ± 0.64 84.7 ± 0.43 86.7 ± 0.31 82.0 ± 0.47

TABLE II
CLASSIFICATION ACCURACY (%) FOR VARIOUS VALUES OF λ AND α IN EQ. (6)

(α = 0 ) (λ = 1/2000)
Target λ = 1/1000 λ = 1/2000 λ = 1/4000 α = 0.25 α = 0.5 α = 0.75

MNIST 98.5 ± 0.10 98.8 ± 0.05 98.8 ± 0.07 98.5 ± 0.11 98.6 ± 0.07 98.5 ± 0.03
MNIST-M 66.7 ± 0.09 69.3 ± 0.20 69.8 ± 0.61 69.2 ± 0.36 68.8 ± 0.43 68.3 ± 0.25
SVHN 72.0 ± 0.51 74.6 ± 0.19 76.0 ± 0.62 74.7 ± 0.26 74.7 ± 0.60 74.5 ± 0.18
USPS 96.8 ± 0.05 97.3 ± 0.05 97.3 ± 0.23 97.1 ± 0.22 97.2 ± 0.27 97.1 ± 0.15
SYN 84.4 ± 0.31 87.0 ± 0.52 86.1 ± 0.14 85.5 ± 0.32 85.3 ± 0.68 85.0 ± 0.63

when a deep network was trained with five random initial val-
ues for our method and three conventional methods: M3SDA,
MMD (for details refer to [18]), and wasserstein-1 [19]. The
difference between our method and the other methods is
whether lSD, moment matching, the MMD with the Gaussian
kernel, or the Wasserstein-1 distance is used in the second
term of Eq. (6). For our method, α in Eq. (6) was set to 0;
that is, lSD was calculated only between the source and target
domains. Weight λ was set to 1/2000 on the basis of the results
of a preliminary experiment. Parameter ε in the algorithm
for SD was varied from 0.01 to 1.0. The best performance
was obtained with ε = 0.1; ε scales M in the algorithm and
should be set appropriately for the task. For all values of ε,
the proposed method performed better than the other distance
measures, demonstrating that our method with lSD is stably
effective.

C. Results for Various Values of Parameters λ and α

We also examined the difference in classification accuracy
for various values of λ and α, where λ is a parameter for
balancing the scale difference between the values of lCE and
lSD. In particular, the value size of lSD varied depending on
the mini-batch size and the feature values in the calculation of
M . Table II lists the classification accuracy for various values
of λ in Eq. (6). When λ = 1/2000, the accuracy was highest
for all domains, so we set λ to this value in all the experiments.
It can be seen that our method with α = 0 performed stably
well for all domains. Some of the source domains seemed
to be distant from each other, so the first and second terms
on the right side of Eq. (7) might have conflicted. Further
investigation is needed to set λ and α properly depending on
the target and source domains’ distributional properties.

D. Analysis of Classification and OT loss

Figure 2 shows the changes in OT loss l(1)
SD between the

target and source domains (the 1st term on the right side of

Fig. 2. OT loss l(1)SD between target and source domains (1st term on right
side of Eq. (7)), and OT loss l(2)SD between source domains (2nd term on
right side of Eq. (7)) when setting SVHN as target domain and with up to
100 iterations of learning deep network.

Eq. 7) and OT loss l(2)
SD between the source domains (the

2nd term on the right side of Eq. (7)) when setting SVHN
as the target domain and learning the deep network up to
100 iterations. The α in Eq. 7 was set to 0. The OT losses
of both l

(1)
SD and l

(2)
SD decreased as the number of iterations

increased for all domains. Since our method uses a common
classifier for all domains, the classier implicitly had the effect
of shifting the data of all domains to the same space, and the
inter-distributional distance among all sources was minimized.
The reduction rate tended to be smaller when the number of
repetitions exceeded 60. These results indicate that MDA with
our method is stable and effective. The difference in scale
between lCE and lSD was O(103), so λ(= 1/2000) in 6 can
be varied to adjust the difference.

E. Complexity Analysis

The overall computational cost consists of the loss compu-
tations for lCE and lSD. The overhead of computing lCE is
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roughly equivalent to training a normal deep neural network
classifier with all data coming from a single source domain.
However, one bottleneck in the computation is from computing
loss lSD as all pair-wise distances among all source domains,
which is O(N2), have to be calculated.

For each pair of domains, the cost of computing the SD in
Eq. (11) includes the cost of computing M between the data
from two domains, roughly O(B2), where the B is the mini-
batch size, and the cost consumed by the Sinkhorn algorithm
[30]. The complexity of the Sinkhorn algorithm giving an ε-
approximate solution is O(B log(B)ε−3) [31]. Overall, the
final cost for lSD is about O(N2B2), where N is the number
of domains.

Since the number of domains N is not large in most appli-
cation problems, the overall complexity is comparable to that
of other multi-domain training tasks. However, as our model
sufficiently exploits data distribution matching, the extra cost
is arguably worthwhile as it results in better classification, as
demonstrated by the results of our experiments. Our method,
with α = 0 in Eq. (6), showed stable performance in all
domains in the experiment. In other words, the terms involving
pairs of source domains in lSD had an almost negligible effect
on model performance in our experiments, so we can reduce
the complexity by excluding the term.

IV. CONCLUSION

We have presented a novel multi-source domain adaptation
method using the Sinkhorn barycenter. The data distributions
of multi-source domains and the target domain are matched
by minimizing both the loss of the cross-entropy and the
loss of the Sinkhorn distance between the distributions and
then shifting the data of all domains to the same space.
Digit classification experiments demonstrated that our method
outperforms other state-of-the-art methods.
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