
Data Selective Deep Neural Networks For Image
Classification

Marcele O. K. Mendonça, Jonathas O. Ferreira and Paulo S. R. Diniz
SMT - Signals, Multimedia, and Telecommunications Lab.

Universidade Federal do Rio de Janeiro, DEL/Poli & PEE/COPPE/UFRJ
P.O. Box 68504, Rio de Janeiro, RJ, 21941-972, Brazil
{marcele.kuhfuss, jonathas.ferreira, diniz}@smt.ufrj.br

Abstract—As the volume of data keeps growing, the use of deep
neural networks has been widespread in a variety of applications,
including image classification. This big available data has led to
an increasing interest in designing more efficient systems. Most
applications use all training data without taking into account
their relevance. A mini-batch gradient descent algorithm is
preferable in practice, but the chosen batch size is typically based
on empirical tests, and it depends on the dataset characteristics.
This work proposes a data-selection strategy applied to classifi-
cation problems leading to computational savings and, in most
cases classification error reduction. A few examples corroborate
the effectiveness of the proposed approach.

Index Terms—Neural Network, Data Selection, Gradient De-
scent, Deep Learning

I. INTRODUCTION

In recent years, machine learning methods have been widely
applied to solve many tasks, such as computer vision [1],
natural language processing [2], and image-processing [3].
By processing a large amount of available data, deep neural
networks (DNNs) have significantly improved the performance
in various of areas, including healthcare, climate monitoring,
and finance. Nevertheless, enormous success in performance
is obtained at the cost of high computational complexity and
storage demand. The sheer volume of available data has led to
increasing interest in designing more efficient systems. Deep
learning is powered by a gradient descent (GD) algorithm or
variants [4]. Instead of training using all data examples at
once like batch GD or just a single training example, as in
stochastic GD, mini-batch GD split the training dataset into
small batches used at each epoch. The mini-batch size plays
a significant role in the behavior of the GD algorithm. With a
large mini-batches, the gradient estimate is more accurate, but
the probability of getting trapped in local minima increases
[5]. Moreover, using large mini-batch may slow down the
convergence rate in practice. In contrast, smaller mini-batches
generate a noisy estimate of the gradient, but the model
convergence requires fewer epochs [6]. When considering
small mini-batches, memory resources can be saved, leading to

This study was financed in part by the Coordenação de Aperfeiçoamento
de Pessoal de Nı́vel Superior - Brasil (CAPES) - Finance Code 001. This
work was also supported by the research councils: CNPq (Conselho Nacional
de Desenvolvimento Cientı́fico e Tecnológico), and FAPERJ (Fundação de
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more efficient systems [7]. The most suitable mini-batch size
is usually empirically obtained, as it is highly data-dependent.

In this work, we propose a procedure that exploits this
data dependency to manage and save available resources in
Neural Network (NN) algorithms [4], [8], [9]. Motivated by
the increasing amount of irrelevant and redundant information
available for processing, we select the most informative data
samples for mini-batch training. In [10], training is improved
by emphasizing the uncertain samples. In contrast, our pro-
posed method selects only the informative samples and dis-
cards the remaining to reduce the computational complexity.
Like our method, in [11]–[14] the batch-selection or hard
example, mining is based on the current loss. In our case,
the loss is the classification error. Our work is also related
to Teaching methods in shallow classifiers [15], [16], but we
propose a method to be applied in deep network structures.
NN’s proposed data-selection method is similar to the one
employed in the linear adaptive filtering and kernel adaptive
filtering areas [17]–[19]. The approach considers the data’s
relevance during the learning process at each iteration of the
parameter update.

The structure of the paper is as follows. In section II, we
describe the basic concepts of a feed-forward neural network
[8], [9], [20]. NN’s data selection method is proposed in
section III, aiming to reduce the computational cost and
improve the performance measures related to the standard
NNs. Section IV presents some simulation results. Section V
includes some concluding remarks.

II. SYSTEM MODEL

We consider the feed-forward neural network [21] com-
posed by layers l = 0, 1, 2, · · · , L, where l = 0 is the input
layer and l = L is the output layer, as illustrated in Figure 1.
The full dataset consists of input-output pairs

D = {(x(1),y(1)), (x(2),y(2)), · · · , (x(M),y(M))}, (1)

where x(m) ∈ RN×1 for m = 1, · · ·M . In a classification
problem with B classes, the desired signal y(m) ∈ RB×1

is one-hot-encoded, meaning that if c is the correct class,
yc(m) = 1 and yi(m) = 0 for i 6= c. By utilizing the softmax
activation function at the output layer, the output signal ŷ
will return a probability distribution on the classes, that is,
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ŷi(m) = P (c = i) and the class with greater probability is
chosen.
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Fig. 1: A feed-forward neural network with L = 3 layers.

In mini-batch training, b examples are randomly selected
from D to form X(t,i) = [x(1),x(2), · · · ,x(b)] and Y(t,i) =
[y(1),y(2), · · · ,y(b)] at each iteration i = 1, 2, · · · I until
complete an epoch t. In the forward pass, the input signals
in X(t,i) flow forward through the network and produce the
estimates in Ŷ(t,i) to be compared with the truth labels Y(t,i).
In the backward pass, the objective function is minimized
with respect to the weights W = [W(1) · · ·W(L)], where the
weight matrix W(l) connects layers l− 1 and l. By using the
gradient descent algorithm, the weights are iteratively updated
following the negative gradient direction,

W(l)(k + 1) = W(l)(k)− µ

b

∂J(W)

∂W(l)

∣∣∣
W(k)

, (2)

where µ is the step size and b is the mini-batch size.

III. DATA SELECTION

In this section, we propose a data selection method for
classification problems using NN. The selection is performed
in each iteration of each epoch. The selection criterion is
directly related to the objective function. Among the b ex-
amples belonging to a mini-batch set X(t,i), consider a data
pair (x,y), presented to the network at iteration i. The output
layer produces an estimate ŷ, which is compared to the target
signal y, resulting in an error signal E(ŷ,y) defined according
to the objective function. The closer to zero the error is, the
less informative or relevant will be the contribution of the
example (x,y) to the parameter update at iteration i of epoch
t.

We can express the error signal as the sum of the errors of
each output neuron

E(ŷ,y) =

d(L)∑
n=1

e(ŷn, yn), (3)

where y = [y1, y2, · · · , yd(L) ] is the target signal and ŷ =
[ŷ1, ŷ2, · · · , ŷd(L) ] is the signal estimated by the neural net-
work.

Figure 2 illustrates the data selection strategy, where we
consider only the most relevant subset of examples to the

learning process. At each iteration per epoch, a mini-batch set
composed by b data samples illustrated in yellow is used in the
forward propagation of the data information. We apply the data
selection using equation (3) to eliminate the non-informative
data represented by the white color. We then proceed with the
remainder data in blue in the backpropagation to update the
parameter vector.
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Fig. 2: Data selection neural network diagram.

We consider the cross-entropy,

J(W) =
1

M

M∑
m=1

d(L)∑
n=1

[−yn(m) ln(ŷn(m))

− (1− yn(m)) ln(1− ŷn(m))],

(4)

as objective function. Combined with the softmax activation
function,

ŷn(m) = h(L)
n (m) =

exp(a
(L)
n (m))∑dL

j=1 exp(a
(L)
n (m))

, (5)

for n = 1, · · · , d(L). Each error measure in equation (3) is
then defined as

e(ŷn, yn) = −yn ln(ŷn)− (1− yn) ln(1− ŷn), (6)

where ŷn is the estimated output for the n-th class and yn is
the n-th desired value for the output y.

The data selection aims to detect the error signals of
equation (3) which are smaller than a given threshold. The
related errors are then disregarded in the process of updating
the coefficients. This proposal requires selecting a threshold
for each iteration of a mini-batch, chosen from a binomial
distribution with n = b and p = Pup,

tbin ∼ Bin(n, p), (7)

where Pup is the percentage of selected data.
We define the set of size tbin containing the indexes of data

examples that lead to the tbin-th largest error signals E,

C = [k1, k2, · · · , ktbin ]. (8)

These tbin data samples are the subset considered in back-
propagation. We also define the set of size b− tbin containing
the indexes of data examples that lead to the smallest error
signals in E,

B = [k1, k2, · · · , kb−tbin ]. (9)
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The data examples whose indexes are in set B are eliminated
before the backpropagation process.

Moreover, we consider a fine adjustment factor 0 < α ≤ 1
to randomly select α × 100% of the examples in set B to be
definitely eliminated. The remaining (1 − α) × 100% of the
examples in set B are temporarily included in set C. Then,
we randomly select tbin samples to keep in set C. This fine
adjustment factor α can be useful when the dataset is too
complex, so that eliminating the smallest errors can impair
the final results.

The data selection method aims at identifying the non-
informative values after the feed-forward propagation process
at each iteration, eliminating a portion of the data before the
backpropagation process. As we are selecting an estimated
portion P̂up of data in each iteration, the update equation is
rewritten as

W(l)(k + 1) = W(l)(k)− µ

bP̂up

h
(l−1)
C δ

(l)T

C , (10)

where P̂up = |C|
b .

As the full dataset is composed of M examples, and each
mini-batch has b examples, the number of iterations per epoch
is I = bM/bc. Suppose M = 60, 000 and we choose b = 32,
then I = 1875. However, if we choose b = 256 and Pup =
0.125, we are still considering 32 examples per iteration but
with a reduced number of iterations I = 234 per epoch.

The complete procedure for Data Selection Feed-Forward
Multilayer Neural Network is described in Table I. At each
epoch, one can compute the objective function for the training
dataset Jtrain and also for the validation dataset Jval.

IV. SIMULATIONS

In this section, the performance of the proposed data
selective neural network is evaluated in three datasets. The
algorithms implemented in MATLAB are available on GitHub
[22].

The algorithm is tested with cross-entropy error as objective
function and softmax as output function, whereas the ReLU
function is used as an activation function in the hidden
layers. We vary the probability of update so that Pup ∈
{0.125, 0.3, 0.5, 0.7} and compare it to the case where the
parameters are always updated, Pup = 1. The reduced compu-
tational cost is the main benefit as we decrease the probability
of update. We verify whether there is an improvement in the
algorithm performance, an additional simulation is included in
each problem, considering each dataset a correspondent mini-
batch size. For example, if the best accuracy is observed by
setting Pup = 0.125 and b = 256, then we compare this result
with Pup = 1 and b = 32.

A. Considered Datasets

1) MNIST Handwritten Digit Dataset: The Modified Na-
tional Institute of Standards and Technology (MNIST) [23]
database is a large data set containing digits handwritten by
students and employees of the United States Census Bureau.
This dataset consists of 60, 000 and 10, 000 in training and
test examples, respectively. The input of this set is a matrix

TABLE I: Data Selection Feed-Forward Multilayer Neural
Network algorithm in classification problem

DS Feed-Forward Multilayer NN algorithm in classification
Initialize
Dataset: {(x(1),y(1)), (x(2),y(2)), · · · , (x(M),y(M))},
Weights: W = {W1,W2, · · · ,WL} (random matrices),
Select: step size µ > 0, number of epochs nep, mini-batch size b,
number of layers L, number of nodes (d1, · · · , dL),
activation function f , forgetting factor λe
Objective function J = Cross-Entropy (CE),
Output function fL = Softmax;

Define I = M/b, prescribe Pup
Do for t = 1 : nep (for each epoch)

Do for i = 1 : I (for each iteration)
Randomly select b examples in training dataset
X(t,i) = [x̄(1), x̄(2), · · · , x̄(b)], Y(t,i) = [ȳ(1), ȳ(2), · · · , ȳ(b)]
[Forward Propagation]:

H(0) = [h(0)(1),h(0)(2), · · · ,h(0)(b)] = [ones(1, b); X(t,i)]
(ones(1, b) is the bias term)

Do for l = 1 : L− 1

A(l) = W(l)T H(l−1)

H(l) = [ones(1, b); f(A(l))]
end
A(L) = (W(L))TH(L−1)

Ŷ(t,i) = [ŷ(1), ŷ(2), · · · , ŷ(b)] = H(L) = fL(A(L))
[Data Selection]:

e(ŷn(k), ȳn(k)) = (1− ȳn(k)) ln(1− ŷn(k))
for k = 1, · · · , b and n = 1, · · · , d(L)

En = [e(ŷn(1), ȳn(1)), · · · , e(ŷn(b), ȳn(b))],
for n = 1, · · · , d(L)

E =
[∑d(L)

n=1 e(ŷn(1), ȳn(1)), · · · ,
∑d(L)

n=1 e(ŷn(b), ȳn(b))
]

tbin ∼ Bin(n, p),
C = [k1, k2 · · · , ktbin ], P̂up = |C|/b
where C is the index set related to the tbin largest values

in the vector E
YC = [ȳ(k1), · · · , ȳ(tbin)], ŶC = [ŷ(k1), · · · , ŷ(tbin)]

[Back-propagation]:
∆

(L)
C = [δ(L)(k1), δ(L)(k2), · · · , δ(L)(tbin)]

= f ′L(A
(L)
C )⊗ (ŶC −YC)

Do for l = L− 1 : −1 : 1

∆
(l)
C = f ′(A

(l)
C )⊗ [W(l+1)∆

(l+1)
C ]d

(l)

1
end

[Updating the weights]:
Do for l = 1 : L

W(l) = W(l) − µ

bP̂up
H

(l−1)
C ∆

(l)T

C
end

end
Jtrain(W) = 1

M

∑M
m=1

∑d(L)

n=1 J
n
m(W) (and Jval if this set

is previously defined)
end

28 × 28, where each value represents a pixel of the image.
The input signal is normalized in the range 0 to 1. The output
dataset presents integer values between 0 and 9.

2) EMNIST Letters Dataset: The EMNIST letter dataset is
a set of 26 handwritten characters, and it is provided by the
National Institute of Standards and Technology (NIST) [24],
[25]. The EMNIST contains 120, 000 and 25, 000 training and
test examples, respectively, with samples normalized between
0 and 1. This set’s input is a matrix 28×28, where each value
represents a pixel of the image.

3) Fashion MNIST Dataset: The Fashion-MNIST dataset
consists of a training set of 60,000 examples and a test set of
10,000 examples of images of 10 types of clothing, such as
shoes, t-shirts, dresses, and more. It is proposed in [26] as a
more challenging classification problem than the MNIST. The
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input of this set is also a matrix 28 × 28, where each value
represents a pixel of the image. The input signal is normalized
in the range 0 to 1.

B. Experiments without fine adjustment

In the following experiments, we consider α = 1, that is,
100% of the elements in set B are kept for discarding. The
considered NN is composed of two hidden layers with 1024
nodes. The step size parameter is µ = 0.1. The mini-batch
size is b = 256, and the number of epochs is nep = 100.

Figure 3 depicts the classification error for the MNIST
dataset. As shown in Figure 3, the data selective NN achieves
a promising performance. As we decrease the amount of
update per epoch, an improvement is observed in two-layer
NN performance (b = 256). Moreover, when compared to
simulation Pup = 1 and b = 32, the data selection with
Pup = 0.125 achieves the performance with the benefit of
requiring a reduced number of iterations.

20 40 60 80

2

3

4

5

6

7

Fig. 3: MNIST Handwritten Digit Simulation.

The classification error for the EMNIST dataset is shown in
Figure 4. The proposed method with Pup = 0.125 performs
quite close to the case where Pup = 1 and b = 32, but the
proposed method requires less iterations per epoch.

Table II includes the data selection method’s performance
in terms of the averaged MSE over the last ten epochs.

TABLE II: Averaged MSE for different probabilities of update
for the EMNIST and MNIST datasets.

EMNIST dataset MNIST dataset

Pup = 1 9.99±0.069 1.87±0.023

Pup = 0.7 9.88±0.056 1.78±0.020

Pup = 0.5 9.72±0.059 1.72±0.021

Pup = 0.3 9.48±0.042 1.69±0.05

Pup = 0.1 9.19±0.034 1.50±0.014

Pup = 0.005 96.12±0.047 22.61±4.65

Pup = 1, b = 32 9.13±0.142 1.60±0.009

We also consider a deep neural network with data selection
for the MNIST dataset. In this case, the number of hidden
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Fig. 4: EMNIST Letters Simulation.

layers is 3, and the mini-batch size is b = 128. As can observe
in Figure 5, the proposed method performs quite similarly to
the case where Pup = 1 and b = 16, with the advantage of
requiring fewer iterations per epoch.

20 40 60 80 100
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4

Fig. 5: MNIST Handwritten Digit Simulation.

C. Experiments with fine adjustment

In the following experiments, we consider the case where
α = 0.9, that is, 90% of the elements in set B are kept for
discarding. The remaining 10% are temporarily included in set
C. Then, tbin samples are randomly selected to be in set C.
By using an adequate adjustment factor α < 1, we can protect
the small erros, which are still informative for more complex
datasets as the Fashion MNIST. As illustrated in Figure 6, by
using Pup = 0.25 with α = 0.9, we can obtain the same
performance of the small mini-batch b = 32 case. However,
the total number of iterations per epoch is reduced from I =
bM/32c to I = bM/128c. The fine adjustment factor α does
not impair the results as shown in Figure 7 if the dataset is
simple as the MNIST dataset.
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Fig. 6: Fashion MNIST Handwritten Digit Simulation.
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Fig. 7: MNIST Handwritten Digit Simulation.

V. CONCLUDING REMARKS

This work introduced a data selection technique to identify
non-innovative data examples in a mini-batch training set of
neural networks. The decision criteria are based on the error
signals at the output layer. In particular, when applied to
image classification, the data selection leads to a reduced
number of training iterations and a reduction in classification
error. The proposed technique can be applied to other archi-
tectures. We have also compared our method with pruning
techniques such as Dropout. However, Dropout is mainly used
for regularization and avoiding overfitting, as our strategy aims
at reducing the complexity. We will use the data selection
technique in convolutional neural networks (CNN) and more
complex datasets in future work.
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