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Abstract—In this paper, we propose a Deep Learning (DL)
approach for the longitudinal assessment of EEG signals under
auditory stimulation for a biometric authentication system.
Longitudinal assessment involves recordings from 13 subjects
over three sessions where the average time-span between the
last session and the first two is almost a year. The proposed
DL approach encodes the EEG data into an embedding space
where the distance between cross-session features from the
same subjects is minimized and the distance between features
from different subjects is maximized. Also, we adopt an en-
coder with a custom convolution layer that extracts improved
functional connectivity features over the standard convolution.
The achieved results show improved recognition rates with a
significant reduction in the acquisition time compared with other
DL frameworks and BCI techniques.

Index Terms—brainwaves (EEG), biometric authentication,
deep learning, triplet loss, session-invariant representations

I. INTRODUCTION

One of the most challenging aspects of brainwaves in
biometric recognition applications is the high time-variability
of EEG signals, specifically, recordings that are conducted
on different days. Although many studies in literature
showed that biomarkers from EEG are subject-unique, many
physiological and non-physiological factors affect the time-
permanence of the EEG patterns like brain state, muscle
or eye movement artifacts, electrodes re-setting, and power-
line interference. To increase the EEG repeatability, previous
works indicated that brainwaves under stimulation (visual
or auditory) are more consistent where the random ongo-
ing brainwave oscillations are minimized. Conventional ap-
proaches to estimate the Evoked Potential (EP) or the Event-
Related Potential (ERP) in response to the presented stimulus
is to average synced frames over multiple trials, however, this
approach requires significantly long recordings.

Faster approaches to estimate the EP/ERP responses in-
volve learning universal or user-specific spatial filters that
either maximize the correlation between the epochs and a
template or maximize the covariance between epochs under
the same task. These techniques were applied successfully
for task identification in Brain Computer Interface (BCI)
applications [1]-[3] and recently for biometric tasks [4], [5].
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However, these techniques focus only on minimizing intra-
subject variability while ignoring the inter-subject separa-
bility. The last aspect is considered crucial especially for
biometric systems. Furthermore, these techniques act only as
de-noising filters and require an additional feature extraction
technique for proper user identity classification.

In this paper, we propose a Deep Learning (DL) approach
that can tackle the aforementioned issues by training an
encoder to minimize a Triplet Loss (TL) objective function.
When trained on multi-session data, the encoder model learns
to extract session-invariant features that improve the repeata-
bility of the evoked potentials in brainwaves. Additionally, we
propose a Custom Convolutional (CC) layer in the encoder
model that outperforms the standard convolution by extracting
superior functional connectivity-based representations. Com-
bining these approaches leads to an improved EEG biometric
system compared to previous DL and BCI approaches.

II. RELATED WORK

In the context of EEG biometrics, different frameworks
have been proposed to improve the time-permanence of
evoked potentials mainly to achieve high recognition rates
using short EEG recordings. These approaches can be divided
into three categories: 1) averaging multiple trials [6]-[12],
user-specific spatial filtering [4], [5], and deep learning [13]-
[19] as presented hereafter.

A. Averaging or Fusion of Multiple Trials

Conventional means to improve the SNR of the EP/ERP
signal rely mainly on averaging EEG epochs which are
synced to the presented stimulus. This approach assumes that
the evoked potentials are stationary across trials and mixed
with white Gaussian noise which represents the spontaneous
EEG [20]. Different representations of EP/ERP signals are
then employed as features including temporal-features [6]—
[8], spectral-features [12], and auto-regressive modelling [12],
[21]. Other approaches extract features directly from the EEG
epochs and then apply a score fusion or majority voting
scheme to improve the recognition rates [10].

While these frameworks achieved high recognition rates,
they required significantly long EEG segments. For instance,
in [7], an acquisition time of +100 s was required to achieve
a perfect recognition rate which is impractical for a biometric
system.
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B. Subject-Unique Spatial Filtering

BCI applications adopted advanced techniques that
achieved a fast and reliable detection of EP signals which sig-
nificantly improved the information transfer rate. These meth-
ods apply a set of spatial filters which are estimated using
statistical analysis of the EEG epochs. These filters enhance
EP detection either by maximizing the correlation between
epochs and a grand-averaged template using Canonical Cor-
relation Analysis (CCA) [1], [2] or by maximizing the inter-
trial covariance of epochs under the same task/stimulation
using Task-related Component Analysis (TRCA) [22].

These approaches were found effective especially when
applied to individual users; i.e. learning a subject-unique set
of filters [3]. This approach was re-purposed recently for
biometric applications and achieved high recognition rates in
relatively shorter authentication times (= 10-30 s) [4], [5].

C. Deep Learning

Although various DL models have been previously pro-
posed, most of them used the standard Cross-Entropy (CE)
loss to learn time-permanent and subject-unique features [13],
[15], [17], [18]. An interesting approach was adopted in [23]
to learn invariant representations of EEG using Generative
Adversarial Network (GAN). The generator/encoder in the
GAN model was trained to learn session-invariant represen-
tations of a specific attribute (e.g. task, session, subject) by
hiding the true label from the discriminator. This approach
was evaluated for biometrics to learn session-invariant fea-
tures which outperformed classical approaches using only 0.5
s EEG epochs [16].

DL approaches improved the repeatability of EP/ERP
across sessions, hence, achieved reliable performance with
shorter testing times (0.5 - 1 s) [13], [16]. This inspired us
to evaluate a different approach that adopts triplet loss to
learn session-invariant features. This approach is compared
with other session-invariant feature processing techniques like
CCA, TRCA, and GAN.

III. PROPOSED FRAMEWORK

A. Database

The protocol used for recording the EEG data under
auditory stimulation is described in our previous work in
[5]. In summary, two auditory stimulations to elicit steady-
state Auditory Evoked Potential (AEP) responses are adopted
namely; m40 and m80. Each stimulus has four auditory
components that are modulated at frequencies that span the
lower and the higher gamma bands. EEG data was recorded at
a sampling frequency of 12 kHz from 7 channels that mainly
capture the fronto-temporal and central brain activity where
the AEP dominates [24]. The channels used are Fz, Cz, T3,
T4, C3, C4, and Oz. Three different sessions, S1, S2, and S3,
were collected from 13 subjects each on a different day (each
session lasted for 5 min). The average time-span between S1
and S2, S2 and S3, S1 and S3 is 14 days, 337 days and 351
days, respectively.

B. Pre-processing and Synchronization

Here, we used the same pre-processing and synchronization
pipeline from our previous work in [5]. Briefly, the baseline
drifts in a 0.5 s window of the EEG signal are estimated
using a Savitzky-Golay filter of polynomial order 3, then, the
estimated baseline is removed from the EEG signal. Next, I[IR
notch filters at 60 and 120 Hz are applied to remove power-
line interference. After that, high frequencies beyond 120 Hz
are filtered out using a Butterworth IIR filter.

For synchronization, the processed EEG signal is divided
into 0.5 s segments and synced to the four auditory com-
ponents in each stimulus to extract 4 synced EEG epochs
(more details about the synchronization step is provided in
[5]). Finally, the synced epochs are downsampled to 250 Hz
to reduce the computational time required for training.

C. Proposed DL Model: The Encoder Structure

The full structure for the encoder model is provided in
Figure 1. The details of each block are discussed hereafter.

Input layer: the input to the encoder model is the synced
epochs per auditory component as described in Section III-B.
The dataset for training is defined as {(ng) s Yn, Sn)}, where
X € RPXT°X1 ig the nth EEG epoch that is synced to the
auditory component ¢, y and s denote the subject and session
ID, respectively. The input to the encoder is represented as
a 3D tensor where P and T are the numbers of the EEG
channels (P = 7) and the temporal samples, respectively.
The last dimension of size 1 represents the number of input
channels for the encoder.

Custom Convolution (CC) block: the standard 2D convo-
lution layer scans the EEG channels according to their order
as provided by the input layer. However, this does not con-
sider the spatial distance between electrodes, hence, fails to
capture inter-connections between the nearby EEG channels.
Instead, the neighbouring channels in different brain regions
are grouped to capture improved spatially-connected patterns
in the EEG signals. To achieve this, the input EEG channels
are divided into 5 groups connecting different brain lobes;
temporal-parietal, frontal-parietal-occipital, frontal-temporal-
occipital as shown in Figure 1b. This allows for better
characterization of the functional connectivity-based features.
Adding this layer showed higher recognition rates over the
Standard Convolution (SC) as described in Section III-B.

Convolution block: this block comprises four identical
sub-blocks that extract various spatiotemporal patterns from
the previous CC block. Each sub-block consists of three
basic layers; standard 2D convolutional, RELU activation,
and Batch Normalization (BN).

Reduction block: the main function of this block is to
reduce the number of the temporal samples and the encoder
channel dimensions before the dense layer in the next block.
This provides better model generalization for unseen data
[25]. This block consists of a 2D max-pooling layer that
reduces the the number of the temporal samples by three.
After that, a convolution block is added with the half number
of filters (kernels).
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Fig. 1: (a) The full structure of the proposed encoder, (b) Layers of each block (ks is the kernel size, k,, is the number of
kernels, P; is the pool size, h,, is the embedding vector size, and [ is the stride)

Fully connected block: this block acts as a feature extrac-
tion stage where the 3D output from the previous blocks is
transformed to a 1D vector, also known as embedding. This
block consists of four basic layers: flatten, dropout, dense
layer, and finally an /s normalization layer. The size of the
embedding vector, h,, is a crucial hyper-parameter of the
encoder as it represents the model capacity to cluster different
classes (i.e. user IDs). We tested four values for h,,: 32, 64,
128, 256 and we found empirically that h,, = 128 achieves
the best accuracy with no significant improvement using 256
vector components.

D. Triplet Loss

Calculation of the TL involves defining three types of ex-
amples: Anchor (A), Positive (P), and Negative (N) [26]. The
A and P examples are from the same subject across different
sessions while the N example is from a different subject. A
distance function is computed between the embeddings of A
and P, dp, and another distance function between the A and
N embeddings d. The TL function is given by the following
equation:

Ny
L= Z |:Hf1(4n) _ f}(an)
n=1

where dp = |f4 — fp|5 and dy = ||fa — x5 using the
squared Euclidean distance, « is a margin that separates
between dp and dp, and n is the example index in the
training batch with size Np. Minimizing the TL function,
L, to zero means that the average inter-subject distance of
the embedded features, dy, is greater than the average intra-
subject distance of the embedded features, dp, by a minimum
value of a.

2 2
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IV. MODEL TRAINING AND RESULTS

As mentioned earlier, each stimulus has four auditory
components, therefore four models were trained; one for each
component. The models were trained to minimize the triplet
loss using online mining for hard triplets [27] where two
sessions were used for training and the third was used for
testing. Since TL convergence takes a significantly long time,
the encoder was briefly pre-trained for 4 epochs with CE loss,
then, trained for 64 epochs with TL (batch size = 32). A drop-
out rate of 0.5 was applied during training and the margin «
was set to 0.5. Adam optimizer was used for training with
an initial learning rate of le — 2. During training, the Correct
Recognition Rate (CRR) was computed every epoch using k-
NN (kK = 1) to save the model with the best testing CRR. A
cloud GPU from Google Colab was used for training with a
computational time of 4.5 s/epoch, i.e. over 15,600 training
examples (2 x 13 x 600).

After training, a template was created using linear Support
Vector Machine (SVM) from the embedded features [25]. In
detail, the trained encoders transformed the training synced
frames into embeddings. Then, the embeddings from each
encoder/frequency component were concatenated together to
form one feature vector. Using the final feature vector, a
linear SVM model was trained as a template for multi-
class classification (for identification under one-vs-all setup)
and binary classification (for verification). The performance
was evaluated using CRR and Equal Error Rate (EER) in
identification and verification modes, respectively.

To perform testing, cross-validation using hold-one-session
out was conducted. In other words, two sessions were used
for model training and SVM template creation and the
third was used for testing. This step was performed three
times where a different session was selected for testing each
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TABLE I: Comparison between our proposed system (CC+TL) and previous DL and BCI frameworks. The mean CRR\EER
are reported in each cell in % (white and shaded rows are for the m40 and m80 protocols, respectively)

Ts | Test session = S1 \ Test session = S2 \ Test session = S3
(s) | CC+TL | DC+GAN | CCA | TRCA | CC+TL | DC+GAN | CCA | TRCA | CC+TL | DC+GAN | CCA | TRCA
05 | 828\7.5 | 747\112 | 52.0\22.1 | 52.0\212 | 94.0\2.3 | 89.0\5.7 | 59.7\17.4 | 59.8\174 | 85.4\53 | 67.8\118 | 512\202 | 53.8\19.2
> | 88.8\d.1 | 79.5\9.0 | 59.6\17.5 | 58.8\17.6 | 85.3\5.6 | 83.1\5.4 | 57.3\19.2 | 55.9\20.2 | 91.8\3.4 | 80.7\9.5 | 59.4\18.9 | 57.0\20.3
| | 85:0\66 | 77.4\108 | 62.6\17.5 | 62.7\16.8 | 97.4\1.1 | 922\4.3 | 747\12.5 | 74.2\123 | 91.6\3.3 | 71.5\10.1 | 65.6\15.4 | 67.4\14.6
91.7\3.0 | 82.4\84 | 70.9\12.3 | 71.3\12.4 | 87.7\4.5 | 86.4\3.8 | 67.7\14.7 | 65.9\16.2 | 95.3\2.0 | 86.0\8.1 | 74.8\12.5 | 69.6\14.6
85.6\6.0 | 78.2\10.6 | 73.2\12.9 | 72.3\12.9 | 99.0\0.4 | 94.0\3.5 | 87.3\7.9 | 85.5\8.1 | 94.8\1.9 | 72.3\9.0 | 77.8\11.3 | 79.2\10.6
93.0\2.5 | 84.2\8.5 | 79.2\8.0 | 81.3\8.0 | 87.6\3.9 | 87.6\2.8 | 72.6\11.3 | 70.3\13.0 | 97.7\1.2 | 88.8\7.7 | 85.4\8.0 | 77.5\10.2
85.6\6.0 | 78.2\10.7 | 76.8\11.0 | 75.8\10.9 | 99.4\0.2 | 94.7\3.0 | 91.3\6.3 | 90.5\6.3 | 96.0\1.4 | 72.5\8.7 | 82.8\9.8 | 82.8\9.6
93.5\2.3 | 84.7\8.5 | 83.6\5.9 | 85.6\6.2 | 87.5\3.6 | 88.0\2.4 | 74.1\10.0 | 722\11.5 | 98.5\1.0 | 89.8\7.3 | 89.2\6.4 | 79.7\8.9
4 | 85:5\5.8 | 783\107 | 80.0\9.7 | 79.1\9.9 |99.6\0.2 | 952\2.8 | 93.9\54 | 933\54 | 96.7\12 | 728\8.5 | 84.8\8.9 | 858\8.4
93.7\2.2 | 85.1\8.5 | 86.1\5.4 | 87.8\5.5 | 87.3\3.5 | 88.1\2.3 | 73.6\9.0 | 73.5\10.4 | 98.9\0.9 | 90.6\7.3 | 91.7\54 | 80.0\8.3
5 85.6\5.8 | 78.3\10.6 | 81.3\9.0 | 80.2\9.1 | 99.7\0.1 | 95.2\2.6 | 95.4\4.9 | 94.1\4.7 | 97.1\1.0 | 72.8\8.4 | 86.4\8.6 | 86.7\8.0
93.9\2.1 | 85.2\8.4 | 86.8\4.7 | 88.7\5.0 | 87.2\3.5 | 88.1\2.1 | 74.2\8.4 | 73.8\10.0 | 99.2\0.8 | 91.0\7.2 | 93.1\4.8 | 81.1\8.2
10 | 85:5\5.6 | 78.4\10.7 | 84.9\7.7 | 83.0\7.8 | 99.9\0.0 | 95.7\22 | 983\3.9 | 97.4\3.2 | 97.8\0.6 | 73.1\8.1 | 89.0\8.4 | 89.6\8.0
94.6\1.8 | 85.7\82 | 89.5\3.8 | 90.8\4.7 | 86.7\3.3 | 88.2\1.8 | 73.7\8.2 | 75.0\9.5 | 99.8\0.6 | 91.6\7.2 | 94.7\4.5 | 82.4\7.6
. . . . 95 T —— m40
time. Using the trained encoders, the testing synced frames % _ - 12 - e
were transformed into embeddings, concatenated together and é i 10 _
. . —_ £ —_ —_
finally, the class ID was predicted using the SVM template. & 8 — L = g, N
Additionally, each encoder/SVM model was trained five times %80 + 1 E .
with different weight initializations to minimize the effect of 75 ° + %EQ <
random initialization and the mean CRR and EER values were 70 ¢ - T
——m80 2
reported. 65
& F 2% 88 %2 R 2% 6RF %%
A. Evaluation of the Proposed Encoder Model with TL g 8 g g g 8 § § g 8 § § g 8 g §

In this section, we evaluate our proposed framework,
CC+TL, for session-invariant feature extraction and compare
it with previous works including; 1) DC+GAN: here, we
used the same encoder with Depth-wise Convolution (DC)
and adversary training coefficient, A = 0.01, as proposed
in [16], however, we used the SVM template for testing as
described above, 2) CCA: We followed the same approach
for steady-state AEP estimation as described in [5], however,
the template and CCA filter weights were estimated using
both training sessions and SVM was used for classification,
3) TRCA: Similar to CCA, but the set of subject-unique
spatial filters was estimated using TRCA as in [4].

As shown in Table I, DL approaches for learning session-
invariant features, either using TL or adversary training
(GAN), significantly outperformed BCI techniques, especially
at short testing times, e.g. 75 = 0.5 s. Additionally, our
proposed model, CC+TL, achieved an improved average
cross-session performance over the DC+GAN framework. In
terms of performance metrics, our model showed 3.5 - 4.5%
lower EER, and 7.5 - 10% higher CRR for m40 and m80
responses, respectively, at Ts = 0.5 s. Also, increasing T’
helps in emerging the response and reducing the unrelated
neural oscillations leading to higher performance, however,
no significant improvement was achieved above 3 s. Acqui-
sition times > 0.5 s were performed by averaging multiple
embeddings using random sub-sampling without replacement
from the test session (more details in [5]).

Figure 2 shows the performance of our encoder model with
CC under different training approaches: CE, TL, and GAN
(denoted as CC+CE, CC+TL, and CC+GAN in Figure 2).

(a) Identification mode (b) Verification mode

Fig. 2: Comparison between different training approaches for
our CC encoder model (CE, TL, GAN) at T, = 0.5 s

The box plot shows the distribution of performance across
different testing sessions and random model initializations.
Even with adversary training, our encoder model achieved
significantly better CRR and EER values compared to the
DC+GAN encoder employed in [16], however, both TL and
GAN training approaches achieved approximately similar
performance using our proposed encoder with custom con-
volution. Besides, training with TL showed relatively higher
performance over CE loss, especially for the m40 response.

B. Evaluation of Reduced Set of EEG Channels

In this section, the performance of the proposed encoder
with TL is evaluated under a reduced set of EEG channels as
shown in Figure 3. In detail, the selected subsets of channels
in the CC block (Figure 1b) are assessed individually as they
are passed directly to the convolution block in Figure la
without custom convolution. As expected, lower performance
was achieved using a lower number of channels, however,
acceptable performance can be achieved using four or five
channels, especially in verification mode. For instance, the
subset Fz-T3-0z-T4 and Fz-C3-Oz-C4 achieved low EER
values (= 5%) at T = 2 s. Additionally, combining these
subsets in a custom convolution layer generates better func-
tional connectivity features that outperformed the standard
convolution of all the channels (denoted as All-SC in Figure
3). In the All-SC test, a standard 2D convolution (with
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Fig. 3: Performance of the proposed model using TL under
a reduced set of channels

ks = [3,3] and valid pad) replaced the CC layer to have
similar output.

V. CONCLUSION

In this paper, we proposed a new deep learning approach
that extracts session-invariant features by adopting triplet loss
as an objective function. Optimizing TL on multi-session data
ensures better session-invariant representations in the feature
space by maximizing inter-subject features and minimizing
inter-session features for the same subject. Additionally,
adopting a custom convolutional layer improves the derivation
of functional connectivity-based features by selecting channel
subsets that link different brain regions. Using a combination
of these configurations, our proposed model outperforms
previous deep learning approaches with adversary training
and BClI-techniques with subject-unique spatial filtering. Our
model showed significantly better performance, in terms of
EER and CRR, in relatively shorter authentication time.
Although channel subsets were selected empirically in this
paper, future work will investigate automatic approaches for
channel subset selection using binary neural networks [28].
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