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Abstract—X-ray acquisitions are beneficial in food contami-
nant analysis as they can detect both metallic and non-metallic
objects. This paper considers the scenario of single-pixel hyper-
spectral X-ray acquisitions applied to a series of materials with
different characteristics. We propose a method that jointly applies
a denoising operation and detects the analysed material in terms
of a physical parameterisation. The proposed algorithm is based
on a Convolutional Neural Network (CNN) trained with a multi-
task learning strategy using a custom loss function tailored to the
problem at hand. Experimental results on metals and polymers
show that the proposed method can also generalise to materials
never seen at training time.

Index Terms—X-ray imaging, CNN, polymer detection

I. INTRODUCTION

Food safety is a discipline that oversees the preparation,
handling and storage of food in order to prevent food-borne
illness. Food contamination can happen during different stages
of its preparation cycle: while cooking, during packaging,
storing and transportation. For this reason, the European Com-
mission has defined a series of food safety guidelines inspired
by Hazard Analysis and Critical Control Points (HACCP)
standards [1]. These impose standard food inspection rules
and regulations on all producers.

There are different ways of detecting food contaminants.
Some tests are intrusive and require physical access to the
substance to be analysed. These include the vast majority
of physical, chemical and biological laboratory analysis [2].
Other tests are non-intrusive and prove extremely important
whenever physical access to food is not feasible, e.g., when-
ever food has already been packaged and sealed. This category
of tests includes all kinds of scans performed while packages
are transported by conveyor belts [3].

This paper focuses on a common category of industrial
systems that play an essential role in food safety and quality
assessment: X-ray sensors that capture hyperspectral images
of objects running on a conveyor belt. Using X-rays has a
series of advantages over other non-intrusive methods, e.g.,
metal detectors. X-rays can penetrate food products enabling
accurate analysis of their interiors with no adverse effects
[4]–[9]. Moreover, X-rays penetration depends on a series
of factors: the atomic number, density and thickness of the

This research was partially supported by Xnext® s.r.l. who provided
the complete data acquisition system together with insight and ex-
pertise that greatly assisted the research. Corresponding author email:
nicolo.bonettini@polimi.it.

Food container

X-ray generator

Hyperspectral

detector

Conveyor belt

X-ray beam

Fig. 1. Representation of the X-ray acquisition system for food contaminant
classification.

elements composing the object under analysis [10], [11].
Therefore, X-ray hyperspectral images can be used as sig-
natures of different materials. Additionally, if an object is
a composite of different elements, it is possible to linearly
combine the absorption effect of the different components
[12]. Therefore, if we know the kind of food we are analysing
and we want to detect physical contaminants within it, it is
possible to subtract the specific food absorption signature from
the performed X-ray acquisition, thus leaving only the possible
contaminant absorption signature within the measurements
[13]. This enables developing classification techniques that are
agnostic to the kind of food a contaminant may be corrupting.
In other words, recognising a contaminant alone helps us
recognise the contaminant buried in food.

In this paper, we consider the problem of joint denoising
and analysis of hyper-spectral data acquired through an X-ray
acquisition system. Given a single pixel of the used linear
sensor, we propose a CNN that returns an estimate of a
noise-free acquisition and detects the material (parameterized
according to two physical quantities) scanned by the X-ray
beam. First approaches to the use of CNNs for hyperspectral
X-ray image denoising was proposed in [14], [15]. Unlike
them, our method works on single pixels, rather than complete
linear acquisitions, making the approach much more flexible
and capable of detecting smaller contaminants. The proposed
technique bases on a CNN, designed to achieve accurate
performance while satisfying two application constraints: (i)
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the analysis must run in real-time, thus the CNN must be fast
enough when compared to the system acquisition rate (i.e.,
overly complicated architectures are not a choice); (ii) materi-
als must be correctly recognized independently from their size
as even tiny objects might be harmful in food safety. We test
the proposed system over a dataset of 347 classes, obtained by
combining 13 materials (polymers and metals) with different
thicknesses. The experimental campaign is conducted to test
the system performance even when some polymers have never
been seen by the CNN during training. Results show that it
is possible to estimate polymers’ parameters even by using a
single pixel of the studied sensor. Moreover, results suggest
that the proposed CNN opens the doors to the possibility of
synthetic data generation, which might be useful whenever
acquisitions should be simulated.

II. BACKGROUND AND PROBLEM STATEMENT

This section introduces the reader to the considered X-ray
acquisition system and Lambert-Beer’s law, which explains the
material parameterization used in this work. Finally, a formal
definition of the problem faced in this paper is presented.

Acquisition system. The considered acquisition system is
depicted in Fig. 1. It is composed of an X-ray generator,
a conveyor belt carrying the object under analysis, and a
hyperspectral X-ray linear detector. The generator emits the
X radiation by directing a stream of high-speed electrons
from the cathode to an X-ray vacuum tube’s anode. The
photons that the object has not absorbed reach the detector,
which counts them at different spectral frequencies. In this
framework, frequencies are commonly named X-ray energies
due to the Planck-Einstein Relation [16].

The linear sensor samples the space in P different locations,
thus can be considered as composed by P pixels. The acquired
spectrum at each pixel location is divided into B photons
frequencies intervals named “energy bins” from now on. For
each time instant, the pixel detector acquires a B-element
vector y containing the photons counts of all the energy bins.

Due to the stochastic photon emission, the acquired signal y
is greatly affected by noise. In principle, we could approximate
the clean acquisition, namely λ, by averaging together an ad-
equate number of the same object’s acquisitions. Nonetheless,
the system operates while the conveyor belt is moving, and
the object intersects the X-ray stream just for a fraction of a
second. Therefore, we cannot always use λ in our analysis, and
it is mandatory to develop a time-efficient processing pipeline
to work in such a real-time scenario.

Lambert-Beer law. Lambert-Beer’s law relates the absorption
of light to the material through which the light passes. Simi-
larly, the absorption of X-rays at each energy E is related to
the material through which the beam passes by the following
equation:

λOUT(E) = e−µ(E)∆xλIN(E), (1)

where λIN(E) is the average number of incident X-ray photons
with energy E, λOUT(E) is the average number of transmitted
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Fig. 2. Proposed network architecture and interaction between the CNN
(yellow, top) and loss terms (blue, bottom).

ones, µ(E) is the linear attenuation coefficient of the material
and ∆x is the thickness of material through which X-rays have
travelled. When an X-ray beam is acquired and digitalised by
a sensor, energies E are discretised into B energy bins. As
Lambert-Beer’s law holds for every energy bin, we can rewrite
it in vectorial form as:

λOUT = diag[e−µb∆x]λIN, (2)

where µb is the linear attenuation coefficient for the b-th energy
bin, diag is a B×B diagonal matrix, and both λOUT and λIN
are B-element vectors. With this notation at hand, the sensor
reading y is a measure of λOUT.

The linear attenuation coefficient depends on the effective
atomic number Zeff of the material and the density-width ρ∆x
[12], [17]–[19]. This model allows us to bind each material to
a pair of parameters.

Problem formulation. The problem considered in this paper
is twofold. Given one noisy spectral acquisition y we are
interested in: (i) estimate λ, the clean version of it; (ii) estimate
the two parameters Zeff and ρ∆x associated with the material.
We consider the two estimations to be performed jointly as in
a multi-task learning problem. Therefore, the goal of this paper
is to design an operator Θ(·) such that:

λ̂, (Ẑeff , ρ∆̂x) = Θ(y), (3)

where λ̂, Ẑeff and ρ∆̂x represents the estimations of λ, Zeff

and ρ∆x, respectively.

III. METHOD

In our solution, we propose to use an autoencoder-like CNN.
The network takes the spectrum under analysis as input, and
it returns its denoised version and the two parameters Zeff and
ρ∆x characteristic of the material under analysis. The network
is trained according to a multi-task learning strategy. In the
following, we report the details about the used architecture
and the proposed custom loss function.

Network architecture. The proposed network architecture
is depicted in Fig. 2. Following the classical Autoencoder
paradigm, it is composed of an Encoder and a Decoder. The
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Fig. 3. Sample acquisitions from three different classes of the considered
dataset. Blue curves show the actual noisy acquisition, whereas orange dashed
curves show the clean ideal ground truth. Energy bins higher than b = 64
has been hidden for the sake of readability.

input is the spectral acquisition y, whose dimensionality of B
is reduced by the Encoder up to 2. The Encoder comprises
7 1D Convolutional Layers, each one followed by an ELU
non-linearity layer [20]. Each layer’s kernel size is used to
reduce the signal’s dimensionality through valid convolution,
starting from a kernel size of 128 and halving it at each layer.
The Decoder is designed with 7 1D Transposed Convolutional
layers followed by ELUs to be symmetric to the Encoder and
recover the original dimensionality B.

Loss function. The network is trained to minimise a com-
pound loss function that takes into account two different kinds
of errors: (i) the loss term Ly introduces a data fidelity term
between the noisy input spectrum y and the reconstructed
version of it λ̂; (ii) the loss term Lp takes the error on Ẑeff

and ρ∆̂x estimates into account. The generic form of the loss
function is, therefore:

L = γLy + Lp, (4)

where γ is a weighting factor balancing the effect of one loss
term over another.

We experimentally verified that the photons’ count noise
on each energy bin follows an independent Poissonian distri-
bution. This allow us to employ a Weighted Log-Likelihood
(WLL) as a data fidelity term Ly:

Ly =
1

B

B∑
b=1

(ln(P (yb | λ̂b))− ln(P (yb | yb))), (5)

where P (yb | λ̂b) represents the probability mass function for
a Poisson distribution:

P (yb | λ̂b) =
λ̂ybb e

−λ̂b

yb!
. (6)

and P (yb | yb) is defined accordingly. By exploiting this prior,
we do not need to know the actual clean ideal spectrum λ
during training.

We also investigate the use of Mean Squared Error (MSE)
as a term Ly:

Ly =
1

B

B∑
b=1

(
yb − λ̂b

)2

. (7)

In this formulation, we are forcing the network to estimate
the signal’s clean version without explicitly inserting it in the
equation. This is inspired by recent works on image denoising
[21], [22], where the clean version of the input is unknown at
training time.

As far as the term Ly is concerned, we exploit the Mean
Absolute Percentage Error (MAPE) defined as

Lp =

∣∣∣∣∣ Ẑeff

Zeff
− 1

∣∣∣∣∣+

∣∣∣∣∣ρ∆̂x

ρ∆x
− 1

∣∣∣∣∣ . (8)

Notice that previous loss equations are defined for the i-th
sample of the dataset. The global cost function on the whole
dataset of N samples is defined as Ltot = 1

N

∑N
i Li.

Deployment. Once the network is trained, we can feed it a
spectrum y and obtain the clean version of the acquisition
λ̂ alongside the estimation of the two parameters Ẑeff and
ρ∆̂x related to the material. We can also consider the Encoder
and the Decoder part of the CNN separately. Using only the
Encoder will allow us to estimate the parameters Ẑeff and ρ∆̂x
for detection purposes, whereas the Decoder could be used as
a synthetic generator of spectra given two arbitrary parameters
as input.

IV. EXPERIMENTS AND RESULTS

This section describes the performed experimental campaign
and reports the achieved results.

Experimental setup. To identify which combination of loss
terms works best in the multi-task learning configuration
and study the impact of the different loss terms separately,
we devised a series of experiments with different network
configurations.

To validate the multi-task pipeline, we consider two scenar-
ios:

A) Multitask Autoencoder, with WLL as Ly and MAPE as
Lp.

B) Multitask Autoencoder, with MSE as Ly and MAPE as
Lp.

In these two methods, the network input is the noisy spectral
acquisition y. The network outputs are the estimated clean
spectrum λ̂ and the estimated parameters Ẑeff and ρ∆̂x from
the latent space of the network.

To study the effect of the single loss terms, we consider
three scenarios:

C) Only Encoder, with MAPE as Lp.
D) Full Autoencoder, with WLL as Ly .
E) Full Autoencoder, with MSE as Ly .

In scenario C, we consider only the encoding part of the
network. The input is the noisy spectral acquisition y, while
the outputs are directly the latent space parameters Ẑeff and
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Fig. 4. Zeff and ρ∆x true distributions observed in the adopted dataset.

ρ∆̂x. In methods D and E, we do not consider the multi-task
learning part, feeding the network y and obtaining λ̂ without
extracting the latent space parameters.

As stated in Sec. II, we obtain λ by averaging 2 560
acquisition together. It is worth noting that excluding method
C, we train all the other methods to reconstruct λ̂ (the mean
version of the spectrum). However, the loss function Ly takes
as input the noisy acquisition y, and we never use λ during
training. This choice is strictly related to the exploitation of
the inherent prior introduced by Ly , which allows the network
to estimate the mean spectrum λ even without seeing one.

At test time, we are interested in measuring network perfor-
mance. Therefore, we derive two metrics based on the adopted
loss functions. In case of single parameters Zeff and ρ∆x, we
simply use 1−MAPE to obtain a fidelity index fidp ∈ (−∞, 1],
the higher the better. In the case of spectrum, we derive a
compatibility index accy ∈ [0, 1] by computing:

J = − 1

B

B∑
b=1

(ln(P (λb | λ̂b))− ln(P (λb | λb))), (9)

accy = e−J , (10)

that is computing Eq. (5) using the clean version of the
spectrum λ instead of the noisy acquisition y and taking the
negative exponential. When equal to 1, accy indicates a perfect
match between the two spectra, when equal to 0 it indicates a
miserable match.

Regarding the implementation, we resort to Pytorch frame-
work for developing the CNN. All the experiments are run
on a workstation equipped with an NVIDIA Titan V Graphics
Processing Unit (GPU), an Intel Xeon E5-2687W and 256 GiB
RAM.

Dataset. The dataset is composed of acquisitions taken with
the system mentioned above. The operating point of the X-
ray tube is 60keV and 0.3 mA. We place each material object
in front of the sensor and irradiate it with an X-Ray beam,
recording the linear sensor output. For each object, we acquire
2 560 static images, with acquisition time 2ms (i.e., the active
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Fig. 5. Performances of λ̂, Ẑeff and ρ∆̂x varying γ.

recording time of the sensor). The frequency spectrum of
the acquisition is divided into B = 256 energy bins. We
consider only the central pixel of the sensor. Therefore, each
acquisition’s final shape is (1×256) where the first dimension
represents the pixel, and the second dimension is the number
of energy bins used to represent the spectrum. Fig. 3 shows
three sample acquisitions, each belonging to a different class
(i.e., combinations of material and thickness).

We consider 12 different polymers: ‘PE’, ‘PA’, ‘PC’,
‘PMMA’, ‘PET’, ‘POM’, ‘POMADAF’, ‘PVDF’, ‘PTFE’,
‘PBT’, ‘PPS’, ‘PVC’ and the metal Aluminium. These rep-
resent some of the most common contaminants that can be
found during food inspection. Acquisitions are made both on
single materials and on pairs of tiled materials. Considering
all combinations of materials and thicknesses, we end up with
347 different classes, with a roughly uniform distribution of
parameters Zeff and ρ∆x, as shown in Fig. 4.

The whole corpus of images is composed of more than
908 445 acquisitions of shape (1 × 256). We remove all the
acquisitions of materials ‘PA’ and ‘POMADAF’ from the
whole corpus. We also remove all the acquisitions of all
the other materials at thickness 24mm and 36mm. From this
reduced corpus, we use the 70% to create the train set D,
and the remaining 30% composes the first test set T . We
use an additional 20% of the train set as a validation set to
evaluate the training procedure. The acquisitions of materials
‘PA’ and ‘POMADAF’ compose the second test set Tm, while
the acquisitions of all the materials with thickness 24mm
and 36mm compose the third test set Tt. The purpose of
the last two test sets is to study the system behaviour with
unknown (i.e., previously unseen) classes (i.e., materials and
thicknesses). Those class pairs are randomly chosen.

Parameter search. Since the loss function is a weighted
average between two terms, we are interested in finding the
best weighting factor γ. Therefore, we run a preliminary set
of experiments on T varying γ. Results reported in Fig. 5
shows how incrementing γ gives a little benefit in estimating
λ̂, while affecting the estimation of Ẑeff and ρ∆̂x. To obtain
a balance between the three estimations, we fixed γ = 0.1.

Results on known dataset T . We report results for the known
dataset in Table I. Regarding λ, the multitask approach A
offers a better performance than its single task counterpart E,
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TABLE I
RESULTS ON KNOWN DATASET T .

Method Zeff (fidp) ρ∆x (fidp) λ (accy)

MAPE + MSE (multitask) (A) 0.94227 0.90416 0.97946
MAPE + Poisson (multitask) (B) 0.93868 0.90469 0.96163

MAPE (ρ∆x, Zeff ) (C) 0.94140 0.90355 -
MSE (λ) (E) - - 0.93835

Poisson (λ) (D) - - 0.96395

TABLE II
RESULTS ON UNKNOWN DATASET Tm (UNKNOWN MATERIAL).

Method Zeff (fidp) ρ∆x (fidp) λ (accy)

MAPE + MSE (multitask) 0.93758 0.90864 0.97864
MAPE + Poisson (multitask) 0.93462 0.90947 0.95950

MAPE (ρ∆x, Zeff ) 0.93659 0.90817 -
MSE (λ) - - 0.93613

Poisson (λ) - - 0.96267

while B is comparable with D. The performance on Zeff and
ρ∆x is pretty much the same when comparing with method
C. Probably, the estimation of the two parameters is a more
straightforward task for the network, and it does not need any
help from the multitask learning paradigm. Conversely, the
clean signal estimation is a more challenging task and benefits
from the joint loss function.

Results on unknown datasets Tm and Tt. Table II and
Table III show the results when we test on unknown materials
and thicknesses respectively. We can confirm the trend of
Table I: in both cases, the network reaches the best accuracy
on estimating λ when training in a multitask fashion. The
estimation of Zeff and ρ∆x seems to suffer less from the lack
of multitasking.

V. CONCLUSIONS

This paper proposes a method for jointly denoising a hy-
perspectral X-ray acquisition and estimating the two physical
parameters related to the acquired object. We tested our
approach to a vast dataset of polymers and metal acquisitions,
considering the case in which the network has never seen the
material under analysis. We compared the multitask paradigm
with the separate estimation of the two desired outputs (e.g.,
the parameters and the mean spectrum), showing benefits
in adopting the former. Future work will focus on applying
the decoding part of the network as a physical generator of
synthetic data.
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