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Abstract—The success of continuous path keyboard input as
an alternative text input modality requires high-quality training
data to inform the underlying recognition model. In [1], we have
adopted generative adversarial networks (GANs) to augment the
training corpus with synthetic user-realistic paths. GAN-driven
synthesis makes it possible to emulate the acquisition of enough
paths from enough users to learn a model sufficiently robust
across a large population. The present work studies the influence
of different GAN architectures on path quality and diversity.
Experiments show that explicit content/ style disentanglement
resulting from separate style encoding has only a limited impact
on end user perception. On the other hand, implicit and explicit
style transfer paradigms are complementary in the kind of
user-realistic artifacts they generate. Leveraging multiple GAN
strategies thus injects more robustness into the model through
broader coverage of user idiosyncrasies across a wide lexical
range.

Index Terms—Continuous path recognition, generative adver-
sarial networks, style transfer, embedded devices

I. INTRODUCTION

Entering text on a mobile device using continuous path input
involves sliding the finger in a single continuous motion across
successive keys on the keyboard until the intended word is
complete [2]. After users gain proficiency with this alternative
modality, they often find entering words easier and faster [3],
[4]. As in standard tapping, recognition relies on statistical
pattern matching enhanced with linguistic knowledge in order
to predict the intended word [5].

Continuous path keyboard input has higher inherent ambi-
guity than tapping, because the path trace may exhibit not just
local overshoots/undershoots, but also, depending on the user,
substantial mid-path excursions. Deploying a robust solution
requires a large amount of high-quality training data, which
is difficult/expensive to collect and annotate. This situation
has sparked interest into synthetic paths that could be used as
proxies for real user-generated paths. In [6], for example, the
authors programmatically generated plausible-looking paths
by connecting the characters within a word using an algorithm
that minimizes jerk [7], an approach inspired by human motor
control theory (cf. [8], [9]). Typically, the parameters of such
synthesis algorithms are tuned manually until generated paths
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Entering text on a mobile device involves tapping a sequence of intended keys on a soft 
keyboard of limited size. QuickPath input, where users keep sliding their finger across 
the screen until the intended word is complete, offers an alternative input modality. After 
users gain proficiency with such an option, they often find entering words with one 
single continuous motion across the keyboard easier and faster [1]. The level of 
ambiguity is higher than for regular typing, however, as the path trace may exhibit both 
local overshoots/undershoots (as in standard tapping) and substantial mid-path 
excursions. In this article, we explore how we improved continuous path models for the 
QuickPath keyboard using synthetic data generated by GANs.

1. Introduction
Just like regular QuickType predictive typing, QuickPath recognition relies on robust pattern 
matching enhanced with a statistical language model in order to predict the intended word. To 
illustrate the difficulty of such endeavor, Figure 1 shows exemplar user paths for the words 
“connective”, “initiative”, prenatal”, and “withdrawals”. 

Fig. 1. Path visualization for input word “anybody”—color changes from
green to yellow with time. Typical user path (top), programmatically generated
synthetic path (bottom left), and GAN-generated synthetic path (bottom right).

look “similar enough” to real user paths (based on human
judgments of a small number of paths [10]).

While credible, the ensuing paths are inherently restricted
in their expressiveness and, as a result, do not fully capture
the variability of user paths. To illustrate, Fig. 1 shows a
typical user path (top) and synthetic path (bottom left) for
the word “anybody.” To synthetize more user-realistic training
data, we have recently proposed [1] the adoption of generative
adversarial networks (GANs) [11], [12]. We cast the problem
as an instance of style transfer [13], where an initial synthetic
path produced with simple cubic splines [8] is transformed
to conform to user idiosyncrasies observed across a set of
real user paths. The kind of path that results is illustrated
at the bottom right of Fig. 1. GAN generation tends to
more faithfully render human-like artifacts, resulting in better
proxies for real user-generated paths.

In this paper, we compare the simple type of style transfer
in [1] with a more explicit strategy seeking to disentangle
the various factors influencing style. Of particular interest is
the impact of content/style disentanglement on the quality and
diversity of the generated paths, as measured downstream by
path recognition accuracy at inference time. In the next two

1396ISBN: 978-9-0827-9706-0 EUSIPCO 2021



GAN−modified  

Synthetic Path

NN

Deep  

NN

Deep  

DISCRIMINATOR

P

X

User−generated  

Reference Path

NN

Transfer  

Style  

y
/n

  
v

o
ca

b
u

la
ry

  

GENERATOR

CLASSIFIER

User−generated   

or Not?

Recognized Word? 

Synthetic Path

Input  

Q

Fig. 2. Path generation using style transfer GAN architecture of [1] (with
implicit style representation).

sections, we describe the two associated GAN architectures.
In Sections IV and V, we discuss experimental conditions and
results observed. Section VI summarizes the insights gained.

II. IMPLICIT STYLE TRANSFER

The path synthesis approach adopted in [1] was inspired
from image style transfer (cf. [14] – [16]), where the basic
idea is to bias the generative model in GANs according to
the desired style of image [17]. This led to the architecture
illustrated in Fig. 2, where (given the inherent sequential
nature of paths) both generative and discriminative models are
realized via sequential neural networks (bi-LSTMs).

In Fig. 2, an initial (programmatically generated) input path
X is transformed into a more realistic synthetic path Q based
on a set of user-generated reference paths P , which are collec-
tively representative of a range of observed user idiosyncrasies
and/or styles. Because there is no explicit representation of
such artifacts at the individual user level, the notion of style
remains diffuse across the entire reference corpus, hence the
terminology “implicit style transfer.”

In standard multi-task fashion, every transformed path Q
is also passed to a classifier which verifies that the generated
path is still associated with the intended word. The network is
then more likely to abstract out those discriminative elements
of user generated paths that are most relevant to the current
word. A suitable objective function to train the model of Fig. 2
is the typical linear interpolation of the usual GAN adversarial
loss K(D,G) and the classification loss L(C) (where D, G,
and C refer to the discriminator, generator, and classifier,
respectively). In [1], we used the Connectionist Temporal
Classification (CTC) loss [18] for the classifier.

Not shown on Fig. 2 is the possibility to treat the generative
style transfer model as a sequence-to-sequence model (with
attention) comprising an encoder and a decoder, which can
expose a bottleneck layer representing the path embedding.
In that case, the interpolated objective function should also
include a path reconstruction loss J (R) (whereR refers to the
decoder of the sequence-to-sequence model). Such mininum
mean square error (MMSE) loss is especially beneficial to
assess the path distortion incurred on user-generated paths
during the encoding process.

After multi-task adversarial training is complete, the dis-
criminative model has learned to take into account user id-
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Fig. 3. Path generation using GAN architecture with explicit style extraction
and reconstruction.

iosyncrasies observed in the reference corpus, so the generated
path Q ends up encapsulating the desired range of user
behaviors, while still preserving the main characteristics of the
input content X. Such realistic rendering was a major factor
in the improved results we reported in [1].

III. EXPLICIT STYLE TRANSFER

In the path synthesis approach of Fig. 2, there is no way
to enforce specific constraints on path diversity or artifact
coverage, both of which are largely governed by the range
of behaviors observed in the set of user-generated reference
paths. For more flexibility, it is desirable to explicitly specify
the notion of style at the individual user level (hence the
terminology “explicit style transfer”). Again, we can draw
inspiration from the image synthesis literature, and more
particularly the architecture known as StyleGAN [19].

The authors of [19] proposed to encode individual image
“styles” into a distinct latent space (“style embedding space”),
free from the restriction of following the probability density of
the training data, and therefore more amenable to a systematic
disentanglement of the various factors of variation. In the
context of path generation, this leads to the architecture
illustrated in Fig. 3, where again all models are realized with
sequential neural networks.

In Fig. 3, every user-generated path P is associated with a
style embedding z for that path: a point in the latent space of
individual styles. That extracted style is then used to control
the style of the paths generated by a text-to-path generator.
In contrast with Fig. 2, programmatically generated paths X
are no longer needed: instead, we now leverage the input
text T directly. The steps to generate a path for T in the
same style as P essentially parallel the StyleGAN approach
of [19]: namely, a style encoder extracts the style embedding z
from P , a content attention module provides a focused context
of the input text T , and both the style embedding and the
attended context are passed as input to the generator module to
synthesize the resulting path Q. As before, the GAN-generated
path Q is also passed to the classifier to ensure that it is indeed
associated with the correct intended text T .

Explicit style encoding makes it possible to check the
extent to which the style of the generated path Q conforms
to the style of the reference path P . That is the purpose
of the feedback loop in Fig. 3: the style encoder extracts
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a style embedding z′ from the GAN-generated path Q, and
a consistency loss ensures that z′ is suitably close to the
original style z. With the addition of such MMSE loss M(S)
to enforce consistency in the style embedding space S, an
interpolated objective function similar to the one in the pre-
vious section can be used to train the model. As before, it
is equally possible to treat the generator as a sequence-to-
sequence model exposing the path embedding, in which case
a similar path reconstruction loss should be added to assess
the path distortion incurred on user-generated paths during
encoding.

After multi-task adversarial training is complete, the gener-
ative model has learned a disentangled representation of style
and content, making it possible to generate synthetic paths Q
for arbitrary input text T in any number of known user styles.
In addition, the model has the ability to generate new unseen
styles by interpolating between known user styles in the style
embedding space S.

IV. TESTING CONDITIONS

While the goal of [1] was to demonstrate that GANs
could support training of a more robust recognition model,
in this paper we want to compare the impact of different style
transfer paradigms on the end user experience, as measured
downstream by path recognition accuracy at inference time.
Thus testing conditions need to change. In [1], we leveraged
a balanced test corpus comprising the same number of user
paths for each of the approximately 25k test words considered,
which formed a strict subset of the set of words seen during
training. Such balance was necessary to best characterize
modeling performance across different training compositions.
We also deliberately ignored language model rescoring since
every word was recognized in isolation.

In constrast, for this paper we collected a separate cor-
pus of about 100k user paths associated with actual user
content generated by consenting participants in their normal
usage of messaging and social media apps. Thus, words now
appear according to their natural frequency distribution in
the language. This offers the opportunity to measure Top-1
recognition accuracy after taking into account the influence of
the language model, thus capturing overall end user impact.
By construction, this test set still spans approximately the
same number of words (25k), but this time it includes words
not seen during training, such as rare names, acronyms, and
abbreviations: for example, “NBA” and “btw”.

Training conditions were closely aligned with [1]. We relied
on the set of 2.2M user-generated paths referenced in [1] as
U2, which covers 55k English words collected from a diversity
of users in a variety of conditions. Specifically, 665 users
(roughly half males, half females) ranging in age from 18
to 70 years produced paths on 6 layouts with various screen
sizes. Thus each participant generated on average 3300 paths.
Approximately half of the paths were generated using the
thumb finger, with the other half generated with the index
finger. In line with [20], the participants were chosen to attain
a proportion of left-handed users of about 20%.

As in [1], we then leveraged the reference paths from U2
within the architecture of Fig. 2 to perform implicit style
transfer from initial synthetic paths obtained via cubic splines
[8]. This led to the generation of a set G2 of 2.2M GAN-
modified paths. Finally, we performed explicit style transfer
using the architecture of Fig. 3, again using reference paths
from U2. This led to a comparable set H2 of 2.2M style-
disentangled GAN-generated paths. Neither set contained data
generated for words outside the 55k inventory.

For comparison, we also trained on a larger set U5 of
5M user-generated paths (comprising the 2.2M original user
paths). In addition, with the help of a wide-coverage English
lexicon, we generated an alternative set H2* of 2.2M style-
disentangled paths, this time designed to cover words both
inside and outside the 55k inventory, thus providing training
data for words for which no user data is available.

V. EXPERIMENTAL RESULTS

The results of our experiments are summarized in Table I.
We report Top-1 recognition accuracies for the entire test set
(column “All Words”), as well as separate Top-1 accuracies
for the subset of paths associated with the 55k words seen in
training (column “55k-Words”). Comparing the latter accura-
cies (≈ 95%) with results reported in [1] (≈ 65%) reflects the
considerable influence of the language model.

Clearly, bringing to bear linguistic resources also reduces
the differences observed in [1] between different training
compositions, to the point that they become harder to perceive
for the end user. In practice, linguistic constraints act as a
counterbalance to low diversity in the original data collection,
regardless of the GAN ability to capture relevant user artifacts.
Still, GAN generation seems to help in modeling words for
which no user data is available. Future work will further
investigate the matter on low-resource languages, for which
zero- or few-shot learning is required.

Table I also shows that, after LM, the two types of GANs do
not yield material differences. Thus, the degree of content/style
disentanglement that can be achieved with explicit style en-
coding has only a limited impact on end user perception. Close
examination of individual paths, however, reveals some com-
plementarity in the kind of user artifacts generated by implicit
and explicit style transfer. Through a systematic analysis of
error differences obtained across training compositions, we
observed that GAN augmentation involving both G2 and H2

TABLE I
Recognition results for different training compositions, on 104,057 test paths

spanning 24,926 words.

Training Top-1 Accuracy After LM
Composition All Words 55k-Words

U2 91.9 % 94.8 %

U2+G2 91.6 % 94.6 %
U2+H2 91.7 % 94.5 %
U2+G2+H2 91.8 % 94.6 %

U5 92.1 % 94.9 %
U5+H2* 92.4 % 94.9 %
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Fig. 4. Two observed test paths with markedly different styles for input word “doesn’t”.

achieves broader coverage of user idiosyncrasies than either
of them alone. This greater robustness can perhaps be traced
to the propensity of different GAN frameworks to encapsulate
rarely observed user artifacts in various proportion to their
actual frequency. This observation is especially salient with
smaller sets of user-generated paths.

Figs. 4–6 illustrate this complementarity using two different
renditions of the word “doesn’t” extracted from the test set,
which both led to an error with U2 training alone. The left
path in Fig. 4 was correctly recognized with both U2+G2 and
U2+G2+H2 trainings, largely because in this case augmenting
the training corpus with G2 makes the system more resilient
to the sharp angle in “‘o”, omission of “e”, and overshoot
of “n” (red ellipses). In contrast, the right path in Fig. 4
was correctly recognized with both U2+H2 and U2+G2+H2
trainings, because in this case augmenting the training corpus
with H2 makes the system more resilient to the overshoots of
“d” and “t”, and the loopy style of “n” (blue ellipses).

Such resilience is readily explained by looking at how the
two different GAN augmentation strategies cover these various
idiosyncrasies. Fig. 5 depicts four training exemplars extracted
from G2, featuring sharp angles in “‘o”, omissions of either
“e” or “s” and near overshoots of “n” (red ellipses). In contrast,
Fig. 6 depicts four training exemplars extracted from H2,
featuring consistent overshoots of “d” and instances of loopy

Fig. 5. Explicit style transfer training instances (from G2).

style—though not always on “n” (blue ellipses). This case
study illustrates the combinatorial complexity of generating
all possible artifacts at every point of every path for every
possible word. Multiple GAN strategies inherently help render
a greater diversity of artifacts.

VI. CONCLUSION

This paper has studied the influence of different multi-
task adversarial architectures on the quality and diversity
of GAN-generated paths, looking more particularly at the
impact of implicit vs. explicit content/style disentanglement.
We observed that after linguistic resources are applied, ex-
plicit style extraction does not confer material benefits over
implicit style transfer. On the other hand, close examination
of individual paths revealed that the two generative models are
complementary in the kind of user-realistic artifacts that they
are able to produce. Explicit style transfer allows finer control
of local behavior, while implicit style transfer renders observed
attributes more diffusely across paths. Such complementarity
is especially beneficial for expanding lexical coverage by
generating paths with a diverse spread of more effective
artifacts. Leveraging both implicit and explicit style transfer
can thus inject more robustness into the model through a
broader coverage of user idiosyncrasies across a wide lexical
range.

Fig. 6. Implicit style transfer training instances (from H2).
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