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Abstract—Manual ultrasonic inspection is a widely used Non-
destructive Testing (NDT) technique due to its simplicity and
compatibility with complex structures. However, in contrast to the
data acquired using a robotic positioner, manual measurements
suffer from perturbations caused by a variable coupling and a
varying scanning density. Imaging techniques like the synthetic
aperture focusing technique rely on an unperturbed dense mea-
surement from an equidistant measurement grid. Consequently,
imaging based on freehand measurements leads to artifacts. This
work aims at reducing such artifacts by preprocessing the manual
measurements using Deep Neural Networks (DNN). The training
of a DNN requires a large set of labeled measurements which is
difficult to obtain in NDT. In this work, we present a technique
to train the DNN using only synthetic data. We show that the
resulting DNN generalizes well on real measurements. We present
an improvement in Generalized Contrast to Noise Ratio by a
factor of 20 and 3 compared to omitting the preprocessing for
synthetic and measurement data, respectively.

Index Terms—Deep Neural Network, Ultrasound NDT, Free-
hand Measurements,

I. INTRODUCTION AND STATE OF THE ART

Ultrasound Nondestructive Testing (NDT) is widely used to
evaluate material properties and detect harmful defects without
destroying or impairing the component being tested [1]. A
common way of investigation is to compute images from single
channel synthetic aperture measurements using the Synthetic
Aperture Focusing Technique (SAFT) [2]. Typically, SAFT is
only employed on automated measurements taken from a regular
equidistant grid. However, in many scenarios measurements
need to be taken manually by an engineer as employing an
automated setup would not be cost effective and requires a
large effort in programming and configuration to be compatible
with the specimen. By using an assistance system to track
the scanning positions during these manual measurements,
imaging becomes possible [3]. SAFT can be formulated in
a progressive manner to create a reconstruction image that
is updated with each newly acquired scan. Naturally, these
manual scanning positions will not form a regular equidistant
grid leading to artifacts in the reconstruction caused by the
unbalanced scanning density [4]. In addition to this, further
artifacts arise if there are variations in the scans due to varying
coupling between the transducer and the specimen surface, e.g.,
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due to surface roughness. Still, a valid approach is to view the
freehand scans as sparse perturbed measurements taken on a
denser grid. This grid can for example arise from the discrete
output of the tracking system.

In the medical community, freehand 3D ultrasound imaging
systems have been developed for decades [5]. However, in
contrast to our work, a standard approach is to interpolate
the 3D volumes from 2D beamforming images [6] instead of
employing a 3D reconstrution scheme. In NDT, the Region of
Interest (ROI) is usually much larger than in medical scenarios,
making synthetic aperture approaches more attractive than
the use of arrays. Further, since the goal is to detect small
discontinuities in a large ROI, a progressive reconstruction
scheme that locally updates the 3D image based on incoming
measurements is required in contrast to computing a complete
image of a single target object as typical in medicine. This
has the additional benefit that NDT scenarios allow for a
much simpler acquisition setup, only requiring a single channel
transducer and a 2D surface tracking system that could be
implemented using a single camera [4].

Deep learning is a leading edge of artificial intelligence
that allows computer programs to train themselves in order
to process and learn from available data [7]. Recently, it has
been shown that the image quality can be maintained by using
a Deep Neural Network (DNN) to perform imaging from
undersampled synthetic aperture data [8], [9] compared to
conventional imaging of the fully sampled data. In [10] a DNN
is used to estimate the motion of the probe of a freehand
ultrasound system based on the ultrasound measurement data.

In more related work, DNNs have been employed to
interpolate measurements of irregularly subsampled seismic
data [11]. A U-Net that is trained on randomly subsampled
data is used to reconstruct the missing measurements. In [12],
this method was extended to the reconstruction of 3D volumes
using 3D convolutional neural networks.

In this paper, we propose a DNN based preprocessing
technique which aims at the prediction of missing scans in
the proximity of the current acquired measurement leading
to a locally fully sampled and adjusted data set that is then
used as input data to compute a SAFT image. A natural
way to train such a DNN would be to manually subsample
densely recorded data and then train the network to interpolate
the missing samples. However, this requires a large set of
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labeled measurements which are difficult to obtain in NDT.
Hence, in contrast to [11], [12], we train our model using a
data set comprising only synthesized measurements using a
rather simplified forward model. The different propagation
modes are separable, enabling techniques that address a single
mode at a time [13]. Due to this, multiple scattering can be
incorporated via ray tracing, where each ray can be assigned
a refraction angle based on the desired mode. Furthermore,
when the geometry is simple and scatterers are well spaced
from each other and from the specimen boundaries, a single
scattering event suffices. We demonstrate that the DNN model
in fact generalizes well on real measurement data, resulting in
fewer artifacts in the SAFT images based on the pre-processed
measurements compared to the SAFT images using only the
sparse measurement data. In addition, the local ratio between
measured and predicted scans can be used as a further feedback
to the engineer to point out regions with high uncertainty (i.e.
few measurements).

II. SAFT AND FREEHAND MEASUREMENTS

Assume that a single ultrasound transducer is placed at
position (x, y, z = 0) on the surface of a specimen. In a
handheld scenario, the position of the transducer is tracked by
a tracking system, e.g. by using a camera. The specimen is
assumed to be homogeneous and isotropic with constant speed
of sound c. The reflections of an inserted pulse measured by
that same transducer can then be modeled as

gx,y(t) =

D∑
d=1

bdh(t− τx,y(xd, yd, zd)) + nx,y(t). (1)

Here, h(t) is the inserted ultrasound pulse shape, D is the
number of reflectors, τx,y(xd, yd, zd) is the time of flight
computed as

τx,y(xd, yd, zd) =
2

c

√
(x− xd)2 + (y − yd)2 + z2d,

bd the reflection coefficient, and nx,y(t) comprises the measure-
ment noise. The specimen is scanned from a set of measurement
positions M distributed on the specimen’s surface. From these
measurements, the 3-D SAFT image r is then computed as [4]
[r]xr,yr,zr =

∑
∀x,y∈M

ax,y(xr, yr, zr)gx,y
(
τxy

(xr, yr, zr)
)
,

(2)
with ax,y(xr, yr, zr) being an apodization function that down-
weights scans with increasing distance from the assumed defect
position (xr, yr, zr). In this work, a Gaussian apodization as in
[14] is used. Eq. (2) can be implemented as an iterative scheme
that updates r with every newly acquired measurement. In an
automated setting, the positions in M form an equidistant grid.
In contrast, in a handheld measurements, the scanning positions
will be unevenly distributed on the surface as illustrated in Fig. 1,
tracked only with the limited accuracy of the employed tracking
system. Further, additional variations between scans caused by
varying coupling can occur due to the manual movement of the
transducer. Images reconstructed by SAFT will contain artifacts
due to these perturbations [3]. These manual measurement
challenges are very subtle and cannot be avoided even with
extreme care. Hence, it is necessary to preprocess the acquired
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Fig. 1: Illustration of handheld ultrasonic measurements in a local
sub-region
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Fig. 2: Proposed processing chain

measurements to improve the robustness, which results in
artifact reduction in the reconstructed image.

III. PROPOSED DNN MODEL

To account for the challenges discussed in Sec. II, we
introduce a preprocessing step using a DNN. In order to
address these, we need more than one measurement in a
local neighborhood. Hence, a buffer is used to collect the
measurements from the acquisition system. Once a sufficient
number of scans are available in a defined region, the DNN is
used to interpolate the missing scans as well as correct the
time shifts in the acquired measurements. To track sufficient
measurements in a local region, we introduce a threshold µ.
Fig. 2 represents a block diagram of the approach used in this
work. If the buffer accumulates µ scans, the measurements
with their relative positions in the defined local region are
passed on to DNN. The trained model replicates a U-net
architecture [7, chap. 14] trained at regions with and without
defects. The model solves a regression problem in time domain
by learning a function f : Rnx×ny×nt → Rnx×ny×nt , where
the input to the function is a sparse 3D array containing
the available measurement data on a nxdx× nydy grid and
the output of the function is a dense 3D array with missing
measurements predicted. Here, dx and dy are the grid spacing
in x and y direction, respectively, and nt is the number of time
samples per scan. Fig. 1 provides an illustration of a typical
handheld measurement scenario in a local region. We assume
that the prediction can be performed relative to the current local
measurements and is therefore independent of the absolute
position on the specimen’s surface, i.e. a single DNN is used
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globally for the prediction. The scans predicted by the DNN
are fed to the online SAFT reconstruction.

IV. DATA PREPARATION AND TRAINING OF DNN

The training of a DNN requires careful planning and data
preparation. The high level training parameters used in this

Training Cluster TU Ilmenau Cluster , on CPU
Deep Learning Library Keras

Optimizer Adam
Loss Function Mean squared error

Validation metrics Accuracy
Batch Size 10, 30, 100

Weight Initialization Random (uniform distribution)

TABLE I: Training parameters for proposed DNN model

work are listed in Table I, and the procedure is detailed next.

A. Simulated Scans

In order to train the proposed model we need a large dataset
of 3D measurements of a given dimension. It is difficult to
acquire sufficient and versatile enough real measurements for
such a scenario. DNNs easily overfit if the training data do not
contain the full spectrum of situations that may occur in real
measurements. For example, the model can be overfit for a
defect location as we cannot fabricate defects at all locations
possible in real scenarios. Hence, to ensure that the training
dataset is suitable, we synthesize measured scans following the
model in (1) for h(t) defined as

h(t) = e−α(t)t
2

cos(2πfct+ φ), (3)
where fc, is the carrier frequency, φ ∈ [0, π] is the phase, and
α(t) = f2c (1 − sgn(t) · γ). The parameter γ ∈ [0, 1] steers
the asymmetry of the envelope. As γ → 1 the scan becomes
more asymmetric. An example is depicted in Fig. 3. Through
observations from real measurements and industrial expertise
we arrived at a conclusion that 0.7 should be a good fit for γ.
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Fig. 3: Simulated ultrasound echo

B. Simulated Training Data sets

Based on the 1-D model specified in the previous section, we
synthesize M 3-D arrays Xm ∈ Rnx×ny×nt , m = 1, 2, . . . ,M
as our training data set. Each data set contains various defects
positioned at random but mutually distant locations, such that
there are no overlapping echoes in any scan. Each measurement
is then perturbed with additive white Gaussian noise as well as
random offsets along the z-axis to simulate phase shifts due to
varying coupling to form a perturbed measurement X ′m. To
simulate the manual measurements, we assume that freehand

measurements will lead to scanning positions distributed over
the whole (sub)-region, but with varying density.

Recalling Fig. 1, this excludes a scenario where only the
grid positions at the edge of the region are scanned (forming a
perfect square) and all remaining points are untouched, and any
other worst-case scenario, where µ scans are concentrated at
a single location. In contrast, a valid scenario comprises for
example perturbed scans at the blue coordinates that are input
to the DNN with the goal to predict the unperturbed scans at
the gray coordinates. The prediction can only work properly
for features of the specimen present in a sufficient number
of physical measurements. In theory, to detect a single point
source in 3-D space, 4 scans are enough. However, µ needs
to ensure that echoes from this point source are present in at
least 4 scans taken in a subregion. Its concrete value therefore
depends on the minimum defect size that needs to be detected
as well as the employed grid spacing.

Based on this, we simulated the manual measurements by
subsampling every X ′m along x and y uniformly at random
to keep only µ measurements that are input to the DNN by
setting everything else to zero. The network is then trained in a
supervised manner using the corresponding fully sampled Xm

as ground truth, i.e., it is trained such that the mean squared
error between its output X̂m = f(X ′m) and the true Xm is
minimized. During the training, we used 70% of M as training
data and 30% as validation data.

V. RESULTS

To test our proposed setup, we trained a U-net with the layer
wise structure as depicted in Fig. 4. All the convolutional layers

Input Layer (None, 10, 10, n)

Reshape Layer (None, 10, 10, n, 1)

Convolutional Layer (None, 10, 10, n, 5)

Maxpooling Layer (None, 10, 10, n/2, 5)

Convolutional Layer (None, 10, 10, n/2, 10)

Maxpooling Layer (None, 10, 10, n/4, 10)

Convolutional Layer (None, 10, 10, n/4, 30)

Upsampling Layer (None, 10, 10, n/2, 30)

Convolutional Layer (None, 10, 10, n/2, 10)

Upsampling Layer (None, 10, 10, n, 10)

Convolutional Layer (None, 10, 10, n, 5)

Convolutional Layer (None, 10, 10, n, 1)

Reshape Layer (None, 10, 10, n)

Fig. 4: Proposed U-net.

used in the model use convolution kernels of size 10× 10× 3
and a ReLU as activation function except the last convolutional
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Fig. 5: Comparison of top view of reconstructions among fully sampled
data, perturbed measurements and preprocessed measurements using
the proposed DNN.

layer which uses no activation. Maxpooling is applied to the
temporal axis, since ultrasound measurements are commonly
oversampled and additionally admit a sparse representation
under the model in (1). Each scan therefore contains only small
number of relevant features. For the training, the XM are
created assuming aluminium as the material and based on the
parameters listed in Table II.

(xd, yd, zd) U(0, xn), U(0, yn), U(0, zn) m3

M 69603
training data 70% of M

validation data 30% of M
epochs 5

(nx × ny × nt) 10× 10× 590
dx, dy U(0.4, 0.6) mm2

time-shifts U(0.084, 1.26) mm
occurence of z-offsets U(25, 75) %

µ [4, 8, 12, 16] scans per 10× 10 grid
computational time 14.1 hours

TABLE II: Data set parameters to train the proposed DNN. The data
set comprises only simulated data generated using the forward model
defined in (1) and (3).

The trained DNN is then applied to both synthetic and
real measurements. Fully sampled synthetic measurements are
generated for a single point source marking the defect using the
same model as above and then artificially corrupted with noise
and varying coupling. Based on this, we simulated the manual
measurements by dividing the full data-set into sub-regions of
size nx = ny = 10 and subsampling each sub-region uniformly
at random keeping only µ scans per sub-region. The artificially
perturbed dataset is then preprocessed using DNN. SAFT
reconstruction is carried out for the fully sampled, the perturbed
and the perturbed and additionally preprocessed measurements,
respectively. To determine µ, we trained several networks on
different threshold levels and compared their performance
using the described procedure for several randomly generated
synthetic data sets. By this, the lowest level leading to reliable
performance was determined to be 16 for our settings. Fig. 5
represents the top view of these three reconstructions of the
synthetic data. Clearly, the preprocessed measurements using
DNN outperforms the reconstruction from perturbed data. We
further evaluate the results using the GCNR [15]. The GCNR is
a generalization of the standard Contrast-to-Noise-Ratio (CNR),

Fig. 6: Investigated aluminium specimen
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Fig. 7: Comparison of top view of preprocessed measurement and raw
measurement reconstructions of the flat bottom holes at 50mm depth.

to make it more robust to scaling and dynamic range issues. It
is defined as

GCNR = 1−
∫

min (p+(x), p−(x)) dx,

where p+(x) and p−(x) are the probability density functions of
the true positive and true negative regions, respectively. It yields
a value in [0, 1], where 1 means that there is no overlap between
p+(x) and p−(x). The GCNR values for the reconstructions
given in the title of Fig. 5 give a quantitative classification of
the improvement achieved by using the DNN. The results show
that the DNN preprocessing improves the GCNR from 0.8758
to 0.9935, which corresponds to an improvement by a factor of
around 20.1

As a next step, we acquired freehand measurements from the
aluminium specimen depicted in Fig. 6 using a conventional
piezo-electric circular transducer with center frequency of
4MHz as well as the 3DSmartInspect assistance system
[16, Sec. 5] to test how well our model generalizes to real
measurements. Subregions of size 10× 10 grid points covering
25mm2 were used for the preprocessing. The preprocessing
was done offline after the full measurement was collected.
Fig. 7 represents a comparison between the reconstruction of
the raw freehand measurements of the five flat bottom holes at
a depth of 50mm and the measurements preprocessed using
the DNN. The size of the defects ranges from 5mm to 1mm
in diameter from left to right. To ensure a fair comparison of
the reconstruction of the different defects in the specimen, in
each subregion we randomly selected µ = 16 scans as input to
the DNN and discarded the remaining scans, if a subregion
contained more scans than the threshold. Table III conveys a
better chance of recognizing the defect by preprocessing the

1Since the GCNR is in [0, 1] where 1 is the optimum, the GCNR improvement
from g1 to g2 is measured as (1− g1)/(1− g2).

1404



−10

−5

0

−25

−20

−15

0 5 10 15

−70

−65

−60

0 5 10 15

Fig. 8: Zoomed in comparison of the first, second and fifth defect
(from left to right) in Fig. 7. Left: no preprocessing, right: with
preprocessing. The circular overlay marks the true size of the defect.
The reconstruction from raw measurements has more artifacts compared
to reconstruction from preprocessed measurements using the proposed
DNN.

measurements (e.g., with a factor 3 improvement in GCNR for
the second defect). In all cases except for the smallest defect,
the threshold was met and we witness an improvement in
GCNR. Fig. 8 depicts a zoomed comparison for the defects of
size 5mm, 4mm and 1mm. The first and second column show
the reconstruction from raw and preprocessed measurements,
respectively. The subregion around the 1mm hole in the third
row did not meet the threshold, which resulted in a worse
estimation of the defect dimension compared to the unprocessed
reconstruction.

Data w/o preprocessing preprocessing
Defect 1 0.957 0.974
Defect 2 0.961 0.987
Defect 3 0.983 0.990
Defect 4 0.972 0.989
Defect 5 0.957 0.936

TABLE III: GCNR comparison for the five investigated defects

VI. CONCLUSION

The results clearly show improvements in the preprocessed
reconstructed images compared to the state of the art SAFT
results. The GCNR improves by a factor of 20 and 3 for
the synthetic and measured data sets, respectively. As it is
very difficult to obtain a huge labeled dataset, one of the
important contributions of this work is the training of the
model on synthetic data and its ability to generalize well on
measurement data. Although the improvement in GCNR on the
real measurements is lower as compared to the improvements
on the synthetic measurements, it should be considered that the
model is trained only for point sources, but tested on flat bottom
holes of varying dimensions. Finally, the proposed preprocessing
not only improves imaging by minimizing artifacts outside the

true region, but adds an additional local uncertainty measure to
the assistance system by comparing the local ratio of measured
and predicted scans.
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