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Abstract—Event-based non-intrusive load monitoring (NILM)
commonly consists of two separate modules: an event detector,
which identifies state changes in the aggregate power signal, and
an event classifier, which determines the appliance causing the
change. Consequently, the overall performance of a system for
NILM event classification strongly depends on the reliability of
the event detector, in addition to the quality of the classifier itself,
leading to two possible sources of error within the system. We
propose to use an end-to-end approach for simultaneous event
detection and classification by training a convolutional neural
network on short-time Fourier transform frames of the aggregate
power signal. Our experiments on a public dataset show that
our combined system performs competitively with very high
detection capabilities. Moreover, we show that our method yields
the potential to be easily adapted to different data using transfer
learning.

Index Terms—Non-intrusive load monitoring, event detection,
event classification, CNNs

I. INTRODUCTION

The aim of non-intrusive load monitoring (NILM) is to
estimate appliances’ individual load curves from an aggre-
gate measurement [1]. A common approach [2], [3] is the
construction of load curves based on the appliances’ state
changes, so-called events. The key idea of an event-based
NILM system is, that the load curve of an appliance exhibits
specific steady states with nearly constant power levels. The
transitions between these steady states are called events. Fig. 1
illustrates this concept. If we detect all events of an appliance,
we can then construct its load curve. Clearly, this approach is
only suitable for appliances which exhibit steady states.

The essential prerequisite for the event-based approach is
a reliable event detection. There exists a multitude of event
detection algorithms, most of which use the power signal to
detect state changes. They include simple detection, if consec-
utive samples vary by more than a predefined threshold [1], a
generalized likelihood ratio (GLR) test [4], [5] or goodness of
fit test [6] to detect changes in the sample distribution, matched
filters [7] and clustering of the power data [8]. There are also
a few approaches to detect events from the current signal, e.g.
by detecting changes in the envelope of the current signal [9]
or changes in the current’s harmonic composition [10], [11]. A
more recent approach to detect events from the current signal
employs a denoising autoencoder [12].
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Fig. 1. Example of a switching on event.

For each detected event, features are extracted and used for
event classification. The classification of the detected events
is carried out with the use of techniques including clustering
[1], support vector machines [13], k-nearest neighbor [14] and
neural networks [15], [16].

In NILM, deep neural networks (DNN) are mostly used for
non-event-based systems [17]–[20]. These systems train one
DNN for each appliance to directly produce the load curve or
activation curve of this appliance. For training, they need the
individual load or activation curve of each appliance. In a prac-
tical setting, this would require the individual measurement of
all appliances, before a NILM system can be used. An event-
based system, on the other hand, can be deployed without
having to measure the load of individual appliances. Instead,
the events can be detected from the aggregate measurement
and the user can be queried to label events, ideally using semi-
supervised or active learning to reduce the labeling effort [13].

Fig. 2 shows the usual structure of an event-based NILM
system and our contribution, i.e. combining the event de-
tection, feature extraction and event classification stage to
improve such systems. We propose to use a convolutional
neural network (CNN) to simultaneously detect and classify
events from the short-time Fourier transform (STFT) of the
aggregate current. To the best of our knowledge, such an
approach to event-based NILM has not been studied before.

In addition to merging the aforementioned steps into one
end-to-end model, using deep learning yields the potential to
efficiently adapt models trained on one dataset to other datasets
by employing transfer learning. This is especially interesting
for manufacturers who could pre-train a system and then adapt
it to the condition at a client’s local site. Hence, we also
investigate the feasibility of this approach.
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Fig. 2. Common event-based NILM framework and our contribution (green).

II. METHODS

A. Data Preprocessing

The main idea behind using the STFT of the aggregate
current signal is exploiting the harmonic structure of the
current to detect and classify events. To this end, current data
sampled with a sampling frequency FS at least several times
the line frequency FL, i.e. in the kilohertz range, is required.
The STFT is calculated over blocks of two periods of the
current signal, i.e. with a length of 2FS

FL
, resulting in FS

FL
+ 1

frequency bins. The blocks are windowed with a Hamming
window and two adjacent blocks overlap by 50 %.

We used STFT frames with a length of 300 current periods,
which corresponds to 5 s in a 60 Hz power grid, as input data.
This length was chosen to ensure that most events, which vary
significantly in their duration, fit entirely in one frame. We
extracted one frame every two current periods, i.e. every 1

30 s
in a 60 Hz power grid.

B. CNN Model for Event Detection and Classification

Initial experiments showed that building a model too deep
may lead to an increased risk of overfitting when training
on the BLUED dataset. In order to avoid this, we chose
to implement an architecture utilizing inception blocks (see
Fig. 3). The main advantage of such structures is that applying
different convolutional kernel sizes in parallel allows to extract
features of varying local regions from an input image. That
way, the amount of captured information can be increased
without going deeper and risking overfitting. The final model
we implemented is based on the first stage of the GoogLeNet
architecture [21] and depicted in Fig. 4.

As loss function, we use the categorical cross entropy. We
chose ADAM as optimizer (β1 = 0.9, β2 = 0.999, ε = 1),
combined with a scheduled exponential learning rate decay
starting at an initial rate of 0.01.

C. Data Augmentation

To further decrease the risk of overfitting, we employed data
augmentation to our training data. To simulate fluctuations
in the measured power signal, we added random normal
distributed noise with zero mean and a randomly chosen
standard deviation between 0.01 and 0.04 to the STFT frames.

MaxPool 3x3 Conv 1x1 Conv 1x1

Conv 1x1 Conv 5x5 Conv 3x3 Conv 1x1

Concat

Fig. 3. An inception block as proposed in [21] and used in our model.

Input

Conv 7x7

MaxPool 3x3

Conv 1x1

Conv 3x3

MaxPool 3x3 Inception

Inception

MaxPool 3x3

Inception

AvgPool 5x5 Conv 1x1

Flatten

Dense

Dropout

Softmax

Fig. 4. The architecture of our CNN model. The part, which is adapted to
new data by transfer learning in some experiments, is highlighted on the right.

III. DATASETS

We tested our approach on two datasets, the “Building-Level
fUlly-labeled dataset for Electricity Disaggregation” (BLUED)
[5] and our own dataset “ISS kitchen”. Both datasets contain
event labels, so for each event the beginning and end of the
event as well as the appliance causing the event are known.

As the input for the CNN are the STFT frames, we
transferred the labels to the frames. To this end, we defined a
detection window with a length of 60 current periods located
60 periods from the end of the STFT frame. If this detection
window contained the last sample of an event, the label of
this event was used as the frame label. If more than one event
ended within the detection window, the frame was labeled with
the label of the last event ending within the detection window.
Additionally, we labeled 5000 randomly selected frames that
did not contain any events as “no event”. The remaining
unlabeled frames were not used in our investigations.

This study is meant as a proof of concept of our ongoing
research. We therefore only included frames, in which at least
one event ended within the detection window, and frames
without any event. We deliberately excluded all other cases
from our study, but plan to use them in our next prototype.

A. BLUED

We tested our framework on BLUED [5], which is a
publicly available dataset acquired for one week in a single-
family home in the USA. It contains measurements of two
phases and labels for all events identifying the corresponding
appliance. However, the labels only give information about
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Fig. 5. The ISS kitchen dataset in the ∆P -∆Q plane. Switching on events
are marked with a triangle, switching off events with a circle. Squares mark
other state changes.

which appliance an event belongs to, the type of state transition
is unknown. We hence chose to identify the individual state
changes by applying a clustering technique. For each appli-
ance, we determined the change in active and reactive power
∆P and ∆Q, respectively, during each event and performed
a clustering in the ∆P -∆Q plane. Each resulting cluster was
then assumed to belong to one state transition.

In our final datasets, we only included event clusters which
contain at least 20 events and assigned each of those clusters
a class label. The phase A dataset “BLUED A” consists of
681 events distributed over 9 classes, the phase B dataset
“BLUED B” contains a total of 906 events and 21 classes.
After preprocessing and transferring the labels to the STFT
frames, we had a total of 25,347 samples in the BLUED A
dataset and 32,085 samples in BLUED B. These numbers
include the additional “no event” class, leading to a total
number of 10 classes for BLUED A and 22 classes in the
BLUED B dataset. We also combined both phases to form
a bigger dataset “BLUED AB” containing a total of 57,432
samples. The eventless classes of both datasets were merged
into one common class, leading to a total number of 31 classes.

B. ISS Kitchen

The second dataset we used to investigate the generalizabil-
ity of our approach was measured in our institute’s kitchen.
It contains measurements of a refrigerator, a water kettle,
a microwave, a coffee maker and a boiler as well as the
aggregate signal and was acquired over a period of eight
days. In contrast to BLUED, which was measured with 12 kHz
in a 120 V/60 Hz power grid, we measured the voltage and
aggregate current with a sampling frequency of 10 kHz in a
230 V/50 Hz power grid. The distribution of the 12 classes in
the ∆P -∆Q plane is given in Fig. 5. Each class contains at
least 20 samples, which results in 710 samples overall. The
final dataset after preprocessing and adding a class for data
frames without events contains 33,926 samples in 13 classes.

IV. EXPERIMENTS AND RESULTS

A. Experimental Setup

We used 5-fold cross-validation to train our model. The
training set contains 60 % of the samples, while 20 % each
were used for validation after each epoch and testing the final

TABLE I
THE MEAN TEST ACCURACIES OVER ALL FOLDS FOR THE EVENT

CLASSIFICATION, EVENT DETECTION AND THE COMBINATION OF BOTH AS
WELL AS THE EVENT DETECTION RECALL.

BLUED A BLUED B BLUED AB
accuracy combined 98.74 % 93.76 % 96.65 %

accuracy classification 98.43 % 93.86 % 96.01 %

accuracy detection 99.73 % 98.30 % 99.65 %
recall detection 99.46 % 97.13 % 99.58 %

model, respectively. Data splitting was performed such that
frames belonging to the same event were contained entirely
in one of the folds. The training data was then augmented to
four times the original size by applying the aforementioned
augmentation to each STFT frame three times with different
noise. Each model was trained with a batch size of 256 for
100 epochs (BLUED A) or 150 epochs (BLUED B, BLUED
AB). As final results to evaluate our models, we used the mean
accuracy and recall over all folds.

We first conducted experiments on the combined event
detection and classification. To evaluate the results in more
detail, we then investigated the event detection and event clas-
sification capabilities of our model separately. Additionally, we
tested the generalization of the event detection by applying the
model trained on BLUED AB to the ISS kitchen dataset.

Finally, we investigated the possibility to adapt our trained
model to a new dataset. To this end, we applied transfer
learning to a trained model by freezing all layers up to the
average pooling layer, i.e. only the last convolutional layer,
dense layer and a new classification layer were trained on
the unseen dataset, as highlighted in Fig. 4. We conducted
two experiments adapting a model trained on BLUED B to
BLUED A and on BLUED AB to ISS kitchen, respectively.
Each model adaption was trained for an additional 100 epochs.

B. Results of Event Detection and Classification

The results of our experiments are given in Table I. The
combined event detection and classification worked well on all
datasets with the highest performance on BLUED A, followed
by BLUED AB and BLUED B. Closer investigation of the
results revealed that for BLUED A and BLUED AB, there
is little confusion between different events and almost no
confusion of the “no event” class with any event class. On
BLUED B, 7 to 12 % of events with small power changes
(monitor and office lights) are predicted as “no event”. The
model is also at risk of mistaking these classes, which exhibit
similar electrical characteristics, for each other.

To be able to compare the results to our previous work on
feature-based event classification [13], we examined the clas-
sification capabilities of our architecture, i.e. excluding frames
from the “no events” class. The results are slightly lower than
the values for the combined detection and classification. Again,
performance on BLUED A is the highest, followed by BLUED
AB and BLUED B.

As the detection of events is crucial for our proposed
system to work, we evaluted how well our models are able
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to differentiate between the “no events” and the remaining
classes. The performance achieved is very high for all three
datasets. As detection of all events is more important than
accidentally classifying an eventless frame as event, we addi-
tionally evaluated the recall, which led to similarly high values.

C. Generalization of the Event Detection
To further investigate how well the model learned to detect

events in the STFT frames, we exemplarily applied a model
trained on BLUED B to the BLUED A data. With respect to
distinguishing between events and eventless frames, the model
achieved a recall of 97.48 % and an accuracy of 98.74 %,
which is only slightly lower than the performance after training
a model directly on BLUED A. Additionally, we applied a
model trained on BLUED AB to the ISS kitchen dataset,
leading to a recall of 91.02 % and an accuracy of 95.42 %.

D. Adaptation of the Combined Model to New Data
Adapting a model trained on BLUED B to BLUED A via

transfer learning led to a test accuracy of 98.48 %, which is
less than 0.3 percentage points lower than the performance
achieved by training the model on BLUED A from scratch.
Using transfer learning to fit a model trained on BLUED AB
to the ISS kitchen dataset, we achieved a test accuracy of
90.46 %. The main error of the adapted model is that all boiler
events are labeled as water kettle events. As both appliances
are resistive loads with almost the same power consumption
(see Fig. 5), they exhibit a particularly similar behavior when
being switched on or off.

V. DISCUSSION

Our proposed system for combined event detection and clas-
sification from STFT frames performed well for all BLUED
datasets. The lower performance on the BLUED B dataset
compared to BLUED A and BLUED AB data can be attributed
to BLUED B containing event classes which are harder to
distinguish than those of BLUED A. For example, there are
two different event classes containing data from monitors,
which exhibit very similar characteristics and are accordingly
often confused by our model. Other classes the model has
difficulties recognizing are power circuits where different,
unidentified appliances are plugged in, which can exhibit
considerably varying power characteristics.

Considering the classification of events, the results we
achieved with our system cannot fully match the performance
of the support vector machine we trained in our previous work
[13]. However, in this case we only trained our model to
distinguish between event classes without taking detection into
consideration. Moreover, the system proposed in this study is
designed as a first proof of concept for the feasibility of end-
to-end event detection and classification. Further investigation
of different architectures, especially such taking temporal
dependencies into account, yields room for improvement of
our system’s performance.

One motivation for our proposed system was the usability
within an online setting. With an average overall processing
time per frame of 0.3 ms, this requirement is satisfied.

TABLE II
COMPARISON OF THE RECALL FOR EVENT DETECTION ON BLUED.

BLUED A BLUED B BLUED AB

proposed approach 99.46 % 97.13 % 99.58 %

GLR [5] 98.16 % 70.41 % –

KFDA of harmonics [11] 98.78 % 92.17 % –

clustering of P , Q [8] 97.20 % 68.18 % 78.53 %

current envelope [9] 94 % 88 % –

clustering of P , IRMS [22] 98.70 % 87.85 % –

MEED (autoencoder) [12] – 69 % –

A. Event Detection

Our proposed system performs very well with respect to
event detection on all BLUED datasets. The recall of BLUED
AB is the highest, which may be due to the higher amount of
different event patterns contained in this combined dataset. We
compared our results to other known approaches for NILM
event detection, for which performance metrics on BLUED
have been published. Since we include all event samples, but
only a randomly chosen subset of the “no event” samples,
we chose to use the recall or true positive rate as metric to
compare our results to other event detectors. As shown in Table
II, most detectors perform well on BLUED A, although not
as well as our proposed approach, but exhibit a significant
decrease in performance for BLUED B, where our system
still leads to a high recall. An evaluation on BLUED AB is
only available for the event detector proposed by Barsim et
al. [8], which achieved a significantly lower recall than ours
on this dataset.

B. Translation to Other Datasets

Both the application of the event detector to unseen data and
the adaptation of a trained model to a new dataset via transfer
learning showed promising results in our experiments. Directly
employing the trained model of BLUED B for event detection
on BLUED A resulted in recall rates a little lower than
after direct training. However, comparing them to the recall
rates from the proposed event detectors in Table II, the event
detection capabilities of our proposed system are definitely
competitive. The BLUED AB model being directly able to
achieve recall and accuracy over 90 % on the ISS kitchen set,
which was measured on a power grid with different voltage
and frequency, supports this claim. Training on data acquired
in both power systems may further improve the generalization
capability.

Regarding transfer learning, results for the translation from
BLUED B to BLUED A were almost as good as when
training on BLUED A from scratch. Adapting a BLUED AB
model to ISS kitchen yielded a little lower test accuracies.
However, taking into account yet again the different power
grids the measurments were acquired on, these results are very
promising. They indicate that the inception blocks in our setup
can extract features from the STFT frames that are general
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enough to represent events reliably, so the model only needs
to learn the correct mapping to the new desired output space.

Easy translation to unknown data is especially interesting
to enable pretraining systems on a large annotated dataset
by a manufacturer and adapting them to local requirements
at a client’s site using as little effort as possible. Transfer
learning yields the potential to accomplish this task efficiently.
In our experiments, we used all available samples in the ISS
kitchen dataset. Further reduction in adaptation expenses could
be achieved by using only the most significant data, e.g. by
employing techniques known from the field of active learning.

C. Outlook

Right now, our model represents a first proof of concept
that the simultaneous detection and classification of events
in NILM by training a CNN end-to-end is feasible. The
determination of the time when the event happens is only
an approximation yet and we do not utilize the temporal
dependencies in the data. Future work will hence address the
temporal dependencies for the exact determination of event
start times and duration. Moreover, in a real-world scenario,
it is common that new appliances are introduced to a power
network at some point, e.g. when a new kitchen appliance is
brought into a household. Appliances may also change over
time, for example when an old refrigerator is exchanged for
a newer model. To address this issue, we plan to make our
system adaptive to new circumstances by incorporating an
interface for user feedback, which can be utilized to retrain the
model using transfer learning combined with methods from the
field of active learning. This is especially beneficial to keep
the labeling costs for the system adaption as low as possible.

VI. CONCLUSION

In this study, we investigated the feasibility of an end-to-end
approach for simultaneous event detection and classification
for non-intrusive load monitoring using deep learning. To this
end, we implemented a CNN which we trained on windowed
STFT frames of NILM events. We tested our system on the
publicly available BLUED dataset (phase A, phase B and
both phases combined) and achieved high performance on all
of them. Additionally, we investigated the generalizability of
our models’ detection capabilities and the adaptability of our
system to new data by means of transfer learning. To this end,
we applied the models trained on BLUED to our own ISS
kitchen dataset. The results show, that our proposed system can
compete with other approaches to NILM event classification.
With respect to event detection, our approach outperforms the
state-of-the-art methods significantly.

Overall, we were able to show that combined event detection
and classification by training an end-to-end CNN architec-
ture is feasible. Especially the possibility to employ transfer
learning techniques, ideally combined with active learning
methods facilitating the incorporation of user feedback, yields
the potential to adapt trained models to new data in a cost-
effective manner and will be addressed in further research.
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