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Abstract—Non-Intrusive Load Monitoring aims to extract the
energy consumption of individual electrical appliances through
disaggregation of the total power consumption as measured by
a single smart meter at a household. Deep neural networks and
especially Convolutional Neural Networks (CNNs) have become
popular in solving the Non-Intrusive Load Monitoring problem.
However, since NILM is a time series problem mostly 1-D CNNs
have been utilized, thus not fully exploiting the capability of
CNNs which are advantageous mostly in 2-D data such as
images. Therefore, in the proposed architecture 2-D signatures
of low frequency active and reactive power are utilized. The
proposed architecture was evaluated on the AMPds2 dataset
reporting performances up-to 96.1% in terms of estimation
accuracy outperforming all previously reported approaches on
the same dataset by 1.1%, in terms of absolute improvement.

Index Terms—Non-Intrusive Load Monitoring (NILM), Energy
Disaggregation, PQ-signatures.

I. INTRODUCTION

Non-Intrusive Load Monitoring (NILM) aims to extract
appliances’ power consumption from the aggregated consump-
tion of a building or a household [1]. NILM can be considered
as a single-channel source separation problem and the NILM
approaches that have been proposed can briefly be grouped
into three categories. First, pattern matching (elastic matching)
techniques, have been proposed in order to detect device
signatures in the aggregated power consumption signal [2],
[3]. Second, source separation methods, including matrix and
tensor factorization as well as sparse coding, have been used
in order to separate base components and activations [4],
[5]. Third, data-driven approaches based on machine learning
algorithms have been used, usually one per device, in order to
estimate the power consumption of device(s) of interest from
the aggregated signal [6], [7].

The latest advances of machine learning and the develop-
ment of big datasets have led to successful deep learning
based NILM methodologies. NILM architectures using Convo-
lutional Neural Networks (CNNs) [8], [9], Long-Short-Term-
Memory (LSTM) [10], [11] and Recurrent Neural Networks
(RNNs) [12] have been proposed in the literature. CNN-
based architectures, such as the approach proposed in [9]
presenting a gate dilated CNN and the approach proposed in
[12] presenting a fractional extension of [9], have reported
exceptional high performances. Additionally, in [8] a CNN
has been proposed for transfer learning in NILM and a high

frequency concatenated CNN was proposed in [13]. Moreover,
also Hidden Markov Models (HMMs) and their variants have
shown good performances [6], [14], [15].

Due to the nature of the NILM problem and its time series
characteristics most of the previously published CNN architec-
tures are based on one-dimensional convolutional layers [8],
[9], [12]. However, CNNs have been originally proposed for
image classification, with 2-d convolutional and pooling layers
performing as data-driven feature extraction engines [16], [17].
Spectrograms of 1-d signals (e.g. speech/audio) have been used
to convert them to 2-d representations (images) and then been
introduced to CNN models with remarkable outcomes [18],
[19]. However, this is not possible in NILM as the sampling
frequency is usually prohibitively low (fs ≈ 1 Hz) [20], [21].

In this paper we propose a two-dimensional active (P )
and reactive (Q) power representation of each frame of the
aggregated signal to create 2-d PQ-signatures. The proposed
approach is the first low frequency NILM approach to use 2-
d CNN models. The remainder of this paper is organized as
follows: In Section II the introduced PQ-signature representa-
tions are described. In Section III the proposed architecture for
low frequency NILM is presented. In Sections IV and V the
experimental setup and the evaluation results are presented,
respectively. Conclusions are provided in Section VI.

II. LOW FREQUENCY PQ SIGNATURE REPRESENTATION

The proposed PQ signature is a two-dimensional represen-
tation of apparent power (S). Let pagg(t) and qagg(t) be the
aggregated active and reactive power measured by a smart
meter with sampling frequency fs and t ∈ N, i.e. starting at
time t = 0. Furthermore, let pτagg be the τ th frame of length
W , with pτagg = [p(t0), p(t0 + 1), ..., p(t0 +W − 1)] where
p(t) is the tth sample of pagg . Similarly, let qτagg be a frame of
length W of the aggregated reactive power. A two-dimensional
PQ-signature can be defined by the signals pτagg and qτagg as
described in Eq. 1.

Sτx,y =
√
pτagg(x)

2 + qτagg(y)
2 (1)

where Sτ ∈ R(W+1)×(W+1) with 0 ≤ x, y ≤ W is the two-
dimensional instantaneous apparent power representation on
the PQ plane for the τ th frame with Sτx,0 = pτagg and Sτ0,y =
qτagg .
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In the proposed PQ representation, Sτx,y captures, not only
the temporal change of the active and reactive power within
each frame, but also the difference in the changes of pτagg and
qτagg with respect to each other. Specifically, each PQ row, x,
represents the apparent power change for active power at time
x when reactive power changes from t0 to t0 +W − 1, while
each PQ column, y, represents the apparent power change for
reactive power at time y when active power changes from
t0 to t0 +W − 1. Examples for PQ signatures of individual
appliances consumption measurements (Sτm) as well as the PQ
signatures of the corresponding aggregated signals (Sτagg) from
the AMPpds2 dataset [22] are shown in Fig. 1.
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Fig. 1. Examples for aggregated (left) and appliance level (right) PQ-
signatures for four different devices, namely: (a) HVAC, (b) cloth dryer, (c)
dishwasher and (d) heat-pump calculated from the AMpds2 [22] dataset where
x, y denotes the indices for active and reactive power respectively. Thick red
lines denote PQ areas of characteristic similar patterns.

As shown in Fig. 1 PQ patterns are characteristic for each of
the appliances (right column) and are visually identifiable in
the aggregated PQ signatures (left column), which indicates
that the proposed 2d PQ signature representations can be
used in the task of energy disaggregation. In addition, the
two-dimensional PQ signatures can further be transformed to
the frequency domain calculating the two-dimensional discrete
Fourier transform for each frame Sτx,y , i.e.

S̃τk,l =
1

W 2

W∑
x=0

W∑
y=0

Sτx,y · e−j2π(
k
W x+ l

W y) (2)

where 1 ≤ k < K and 1 ≤ l < L being index variables
and S̃τ ∈ C(W+1)×(W+1) being the complex spectrogram.
Transformation of the PQ signatures to the frequency domain
will represent the frequency content of active and reactive
power. Examples of active and reactive aggregated power

signals of two frames, (a) and (b), their PQ signatures in the
time domain , (c) and (d), and their spectral magnitudes, (e)
and (f) are shown in Fig. 2.
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Fig. 2. Two frames of pagg and qagg (a-b) and their corresponding PQ
singatures in (c-d) the time and the (e-f) frequency domain where x,y denotes
the time-domain indices of Sτx,y and k,l denotes the frequency-domain
indices.

As shown in Fig. 2 two different frames of aggregated active
and reactive power result into characteristic representations of
the corresponding PQ-signatures both in the time and in the
frequency domain.

III. PROPOSED PQ-SIGNATURE BASED NILM

Considering a set of M −1 known devices each consuming
power pm with 1 ≤ m ≤ M , the aggregated power pagg
measured by the sensor will be:

pagg = f(p1, ..., pM−1, g) =

M−1∑
m=1

pm + g =

M∑
m=1

pm (3)

where g = pM is a ‘ghost’ power consumption (noise)
consumed by one or more unknown devices and f(·) is the
aggregation function. In NILM the goal is to find precise
estimations p̂m, ĝ of the power consumption of each device m
using an estimation method f−1(·) with minimal estimation
error and p̂M = ĝ, i.e.

P̂ = {p̂1, p̂2, ..., p̂M−1, ĝ} = f−1(pagg)

s.t. argmin
f−1

{(pagg −
M∑
m=1

p̂m)2}
(4)

In the proposed approach the disaggregation function f−1 is
using as input the two-dimensional PQ-signatures in the time
and in the frequency domain (spectral magnitude), namely Sτ

and |S̃τ | as described in Eq. 5.

P̂ = {p̂1, p̂2, ..., p̂M−1, ĝ} = f−1(Sτ , |S̃τ |) (5)
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Fig. 3. Block diagram of the proposed NILM architecture, for the mth device, using PQ signatures in the time- and frequency-domain based on CNN
regression. conv2d(x,y) denotes two-dimensional convolutional layers with x being the number of filters and y being the size of the convolution in both
dimensions. Blue denotes time domain, red frequency domain and purple time/frequency domain operations.

where |S̃τ | is the magnitude of the two-dimensional frequency
representation. As Eq. 5 cannot be solved analytically [23],
numerical approaches must be considered. Therefore, the two-
dimensional PQ signatures are selected as input for the CNNs
as part of a learning-based approach. The block diagram of
the proposed architecture is illustrated in Fig. 3.

As illustrated in Fig. 3 the proposed architecture consists of
four steps namely the data acquisition of the aggregated signals
pagg(t) and qagg(t) from one smart-meter, segmentation into
time frames pτagg and qτagg , calculation of PQ signatures (one
PQ signature per frame) in the time and the frequency domain
(Sτ and |S̃τ |) and CNN regression providing a numerical
estimation, P̂ = {p̂1, p̂2, ..., p̂M}, of the power consumption
of each of the M target devices.

IV. EXPERIMENTAL SETUP

The NLIM architecture utilizing PQ signature representa-
tions presented in Section III was evaluated using the datasets,
experimental protocols and CNN regression algorithms de-
scribed below.

A. Datasets and Experimental Protocols

There are several different datasets for NILM [22], [24]–
[26] with varying characteristics such as sampling frequency,
appliances, duration and measured features. To evaluate the
proposed low-frequency NILM methodology the AMPds2 [22]
dataset was used, a low-frequency dataset with sampling
frequency of 1 sample per minute and a monitoring duration
of 2 years. Specifically, the dataset was chosen as it contains
active and reactive power measurements from 20 different
devices as well as the aggregated power and current signals.
Next to using all 20 loads, five out of the 20 loads (deferrable
loads [6], [9]), namely the HVAC system (AC), the Heat Pump
(HP), the Wall Oven (WO), the Cloth Dryer (CD) and the
DishWasher (DW), were chosen for disaggregation on a subset
of appliances similarly to [9].

Regarding the experimental setup the protocol followed in
[9] was adopted in this study for the purpose of direct compari-
son with the state-of-the-art approaches reporting results on the
AMPds2 dataset. Specifically, training was conducted using

randomly 90% of the data and testing on the remaining 10%
using active and reactive power measurements normalized in
the amplitude range (0,1). In detail, three different experimen-
tal protocols were created with respect to the PQ signature
representations described in Section II. The three experimental
protocols, namely PQ signatures (#1) in time (#2) in frequency
and (#3) in time-and-frequency as well as the corresponding
size of each PQ frame, are tabulated in Table I.

TABLE I
THREE EVALUATED EXPERIMENTAL PROTOCOLS INCLUDING THEIR

FEATURES AND DIMENSIONALITY D.

Protocol Features D
#1 PQ-signature time (Sτx,y) 31× 31

#2 PQ-signature frequency (|S̃τx,y |) 31× 31

#3 PQ-signature time/frequency ([Sτx,y , |S̃τx,y |]) 31× 62

The length of the frames was selected equal to W=30 (30
minutes) after empirical optimization on a bootstrap training
dataset utilizing two months of the AMPds2 dataset, thus
resulting to the W + 1 PQ signature sizes tabulated in the
last column of Table I.

B. CNN Regression Model

For the regression stage a CNN model-based approach was
evaluated. Specifically, for the CNN the architecture from [8]
was adapted using one branch for time domain PQ features
and one for frequency domain PQ features as illustrated in
Fig. 3. The architecture of each of the two branches was set
to conv2d(30,10); conv2d(30,8); conv2d(40,6); conv2d(50,5);
conv2d(50,5), as proposed in [8]. The size of dense layer was
equal to 1024 nodes and the learning hyper-parameters are
tabulated in Table II.

V. EXPERIMENTAL RESULTS

The architecture presented in Section III was evaluated
according to the experimental setup described in Section
IV. The performance was evaluated in terms of estimation
accuracy (EACC) considering device operation on state level
with a double counting for errors as proposed in [24], i.e.
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TABLE II
HYPER-PARAMETERS OF THE CNN MODEL AND PARAMETERS OF THE

ADAM SOLVER.

Parameter Protocols #1/#2 Protocol #3
Input size 31× 31 31× 62
Batch size 1000 1000

Epochs 50 50
Learning rate 0.001 0.001

Beta-1 0.9 0.9
Beta-2 0.999 0.999
Epsilon 1e-8 1e-8

EACC = 1−
∑T
t=1

∑M
m=1 |p̂τm − pτm|

2
∑T
t=1

∑M
m=1 |pτm|

(6)

where p̂τm is the estimated power of the mth device, T is
the number of disaggregated frames and M is the number of
devices. Removing the summation over M the disaggregation
accuracy for the mth device can be written as in Eq. 7.

EmACC = 1−
∑T
t=1 |p̂τm − pτm|
2
∑T
t=1 |pτm|

(7)

Additionally, a pattern matching approach based on DTW
was evaluated, similarly as in [2], comparing each two-
dimensional PQ signature against a set of reference PQ signa-
tures created from the training data. The experimental results
for the deferrable loads in terms of EACC for the CNN and
the DTW based approaches are tabulated in Table III.

TABLE III
ENERGY DISAGGREGATION RESULTS FOR DEFERRABLE LOADS IN TERMS

OF EACC (’AVG’ ROW) AND EmACC (’APP’ ROWS) FOR THREE
PROPOSED PROTOCOLS FOR CNN AND DTW RESPECTIVELY.

App CNN DTW
#1 #2 #3 #1 #2 #3

DW 49.6% 52.9% 63.6% 37.5% 19.7% 38.9%
AC 93.2% 92.3% 93.2% 91.8% 91.4% 91.6%
HP 97.9% 92.4% 97.8% 96.7% 93.8% 96.7%
WO 76.7% 54.5% 56.0% 61.7% 51.8% 62.7%
CD 96.1% 80.1% 96.4% 89.4% 84.7% 89.6%

AVG 95.2% 87.3% 95.8% 91.5% 88.3% 92.4%

As shown in Table III the CNN based regression model
outperforms the DTW based approach for all three exper-
imental protocols with protocol #3 presenting the highest
overall performance for both CNN (95.8%) and DTW (92.4%).
Also, time domain PQ-signatures (protocol #1) outperform
frequency-based ones (protocol #2) for both CNN and DTW.
This is probably due to the very low sampling frequency of
1/60 Hz, resulting in loss of frequency content.

To further evaluate the proposed NILM approach, compar-
ison with the highest reported accuracies [9], [12] found in
the literature is presented in Table IV, in terms of power
disaggregation (OUT: P) and current disaggregation (OUT: I)
for all loads (ALL) and deferrable loads (DEF).

As shown in Table IV the proposed approach based on
2-d PQ based CNNs outperforms both previously reported

TABLE IV
PERFORMANCE IN TERMS OF EACC FOR ALL AND DEFERRABLE LOADS

FOR TWO DIFFERENT OUTPUT SIGNALS. ACCURACIES DENOTED WITH ’*’
ARE USING APPARENT POWER AND CURRENT ADDITIONALLY TO ACTIVE

AND REACTIVE POWER, THUS HAVE ADDITIONAL INFORMATION
COMPARED TO THE PROPOSED NILM METHOD.

Loads CNN DTW [9] [12]
ALL (OUT: P) 89.6% 83.4% 87.5% 88.9%
DEF (OUT: P) 95.8% 92.4% 93.9% 94.7%
ALL (OUT: I) 91.4% 84.7% 90.2%* 90.8%*
DEF (OUT: I) 96.1% 92.6% 95.0%* 92.7%*

approaches [9], [12], which are based on 1-d CNN models.
The maximum absolute performance improvement was 2.1%
(ALL (Out: P)) when comparing to [9], while the maximum
absolute improvement was 1.1% and 1.2% for the setup
utilizing deferrable loads and current as output signal. The
performances of DTW are 2-6% worse compared to the CNN
based approaches, however DTW comes with the advantage
of not having to train a model [2]. Finally, except the improve-
ments in performance the proposed approach is advantageous
in terms of learning rate as it converged within 50 epochs,
while the approach in [9] needed 300 (deferrable loads) or 500
(all loads) epochs to converge. The two convergence curvatures
are illustrated in Fig. 4.
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Fig. 4. Convergence behaviour for the proposed PQ-signatures (OUT: I) as
well as for the waveNILM (OUT: I) approach presented in [9] for the first 50
epochs of training. For convergence of ”waveNILM” beyond 50 epochs the
interested reader is referred to [9].

VI. CONCLUSION

We presented a two-dimensional representation of energy
consumption using active and reactive power measurements,
which was used as input to a convolutional neural network
model for regression. Using the proposed two-dimensional
representations in the time and in the frequency domain,
after 2-d discrete Fourier transform, significantly improved
the non-intrusive load monitoring performance when directly
compared the top performing approaches reported in the
literature for low frequency energy consumption signals. The
proposed architecture was evaluated on the AMPds2 dataset
reporting performances up-to 96.1% in terms of estimation
accuracy outperforming all previously reported approaches on
the same dataset by 1.1%, in terms of absolute improvement.
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