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Abstract—We propose Gaussian process regression (GPR) for
encrypted data generated based on random unitary transforma-
tion. Edge cloud computing is spreading into many application
fields, including data analysis services. However, new privacy
concerns are being raised regarding things such as data leakage
from unreliable providers and accidents. Therefore, we examine
a secure GPR method that incorporates privacy protection. We
prove that our GPR for encrypted data performs the same
as GPR for non-encrypted data. Finally, we determine the
effectiveness of our method by experimenting with diabetes data
from the medical analysis field and synthetic data.

Index Terms—Gaussian process, random unitary transforma-
tion, machine learning

I. INTRODUCTION

Edge/cloud computing has rapidly become widespread in
fields such as big data analytics. However, edge/cloud com-
puting depends on the reliability of service providers, so
privacy concerns have arisen in response to unreliability and
the unauthorized use or loss of data resulting from accidents
[1].

Secure computation in the encrypted domain has been
studied as a response to these concerns. Most studies on
encrypted data processing have used homomorphic encryption
and secure multiparty computation [2] [3]. However, these
approaches incur high computation complexity, which causes
heavy loads on encrypting sites and large cipher text sizes.
Cancelable biometrics [4] are being studied as methods that
realize low complexity processing in the encrypted domain.
Random projection (RP) is a method that projects an input
signal into a lower dimensional sub-space using a random
matrix generated from random numbers. BioHashing [5] is an
encryption based on RP that transforms the input data into a
binary string called the “hash code”. Note that these encryption
schemes are irreversible. Such irreversibility is preferable for
security, but it is difficult to guarantee deterministically that
analysis of the encrypted data does not degrade performance.

We use the random unitary transform [6] in this study
because it offers secure but practical computation in big
data analytics. The random unitary transform has much lower
computation complexity and a smaller cipher text size than
either homomorphic encryption or secure multiparty compu-
tation. Moreover, the random unitary transform guarantees
the reversibility of the transform. The reversibility guarantees

deterministically that analysis of the encrypted data does not
degrade performance. Based on the random unitary transform,
we have proposed a secure sparse coding method for image
compression, pattern recognition, and data analysis [7]- [10].

The Gaussian process (GP) based on Bayesian non-
parametrics has been attracting attention in the machine learn-
ing field [11]. GPs can encode domain and expert knowl-
edge into kernel functions from model linear to non-linear
data. Highly accurate estimation is possible by optimizing
the hyperparameters of kernel functions based on the Bayes’
theorem. In addition, it can output prediction uncertainty based
on the amount of data used for learning. A neural network
with an infinite number of units in a single hidden layer can be
represented by a GP [12]. The neural network GP (NNGP) has
been reported as equivalent to deep learning that corresponds
to a multi-layer neural network [13].

We propose Gaussian process regression (GPR) for the
encrypted data generated by the random unitary transform. We
prove that our GPR for encrypted data performs the same as
GPR for non-encrypted data. Simulation results showed that
it is possible to solve a regression problem while keeping the
input data secure when we made predictions for clinical data
of diabetes without deteriorating the estimation performance
compared with GPR for non-encrypted data.

The organization of this paper is as follows. Section II
overviews GPR. Section III proposes a secure algorithm for
GPR. Section IV explains simulation results. Section V gives
conclusions and future work.

II. GAUSSIAN PROCESS REGRESSION

In this section, we overview the GP and its regression.

A. Gaussian Process

We consider a regression problem in which the input is
x ∈ RD (a row vector) and the output is y ∈ R. Let Dtrain =
{X,Y } be a pair of N training data, and define X and Y
by the following equation.

X =


x1

x2

...
xN

 , Y =


y1
y2
...
yN

 . (1)

1441ISBN: 978-9-0827-9706-0 EUSIPCO 2021



Given X and noisy output observation

Y = f(X) + ϵ, (2)

where ϵ is an i.i.d. Gaussian noise with zero mean and σ2

variance accounting for the measurement/modeling errors, GP
seeks to infer the latent function f(X). It is expressed by

f(X) ∼ GP(0,K(X,X)), (3)

which is completely defined by the mean function (usually set
to zero without loss of generality) and the so-called kernel
function K(X,X). The kernel function is the symmetric
and positive semi-definite covariance matrix with Ki,j =
K(xi,xj). The radial basis function (RBF) kernel is often
used in the GP. It is defined by the following equation.

K(xi,xj) = θ1 exp

(
−|xi − xj |2

θ2

)
+ σ2δ(i, j), (4)

where δ(i, j) is a function that returns 1 when i = j and 0
otherwise. The hyperparameters, including the parameters in
K and σ, can be well trained by optimizing the negative log
marginal likelihood

min
K,σ

Y T (K(X,X) + σ2I)−1Y + log2 |K(X,X) + σ2I|,
(5)

which can be solved by the efficient gradient descent algorithm
via the partial derivatives of the marginal likelihood regarding
the hyperparameters [14].

B. Gaussian Process Regression

Next, we consider solving the regression problem based on
the GP to obtain the prediction of target value y∗ ∈ R for a
new input x∗ ∈ RD. We define a pair of datasets Dtest =
{X∗,Y ∗}, where X∗ and Y ∗ are given by

X∗ =


x∗
1

x∗
2
...

x∗
M

 , Y ∗ =


y∗1
y∗2
...

y∗M

 , (6)

where M is the number of test datasets. Thus, the joint prior
distribution of Y with f(X∗) is obtained based on[

Y
f(X∗)

]
∼ N

( [
0
0

]
,

[
K(X,X) + σ2I K(X,X∗)

K(X∗,X) K(X∗,X∗)

])
,

(7)
where K(X,X∗) denotes the covariance between the N
training points and the M testing point. By conditioning
the joint Gaussian prior distribution on Y , the posterior
distribution of f(X∗) can be analytically derived as

p(f(X∗)|(X,Y ,X∗)) ∼ N (f(X∗), σ2(X∗)), (8)

where the prediction mean and variance are respectively given
as

f(X∗) = K(X∗,X)T [K(X,X) + σ2I]−1Y

σ2(X∗) = K(X∗,X∗)−K(X∗,X)T [K(X,X)

+σ2I]−1K(X∗,X∗). (9)

Fig. 1. System configuration of secure GP regression.

III. SECURE COMPUTATION OF GAUSSIAN PROCESS
REGRESSION

In this section, we propose secure GPR that allows compu-
tation in the encrypted domain.

A. System Configuration
Figure 1 shows a system configuration of secure GP re-

gression. At the local site, N pairs of training data set
Dtrain = {X,Y } are prepared. First, the input X for training
is transformed into the encrypted input X̂ by using the random
unitary matrix Qp generated with a private key p. Then, the
encrypted input X̂ and the output Y are transferred to the
edge/cloud. At the edge/cloud, the kernel function and its
hyperparameters θ are estimated using X̂ and Y .

Next, the encrypted input X̂
∗

for testing is generated using
the random unitary matrix Qq with a private key q. Then,
the encrypted input X̂

∗
is transferred to the edge/cloud. At

the edge/cloud site, the kernel function is calculated using
X̂

∗
and the pre-delivered X̂ and Y and the mean value

f(X̂
∗
) and the variance σ2(X̂

∗
) are estimated. Here, if the

keys of random unitary transformation used for training and
testing data generation are the same (p = q), the mean value
and variance by our secure GPR are the same as the values
estimated by GPR for the non-encrypted signals.

As described above, the mean value f(X̂
∗
) and the variance

σ2(X̂
∗
) can be calculated without decrypting the input X̂ and

X̂
∗
. It is also possible to protect the data even if it leaks from

the edge/cloud because of unreliability or an accident.

B. Secure Computation
In our secure GP regression, the random unitary transforms

Qp and Qq ∈ RD×D with a private key p and a private key
q are used to encrypt X for training and X∗ for testing,
respectively:

X̂ = XQp =


x̂1

x̂2

...
x̂N

 , X̂
∗
= X∗Qq =


x̂∗
1

x̂∗
2
...

x̂∗
M

 (10)
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The D elements of each sample xi and x∗
i (i = 1, 2, · · · , N)

are encrypted. Given encrypted input X̂ and noisy output
observation

Y = f(X̂) + ϵ, (11)

GP seeks to infer the latent function f(X̂). As in the case
where the input data is not encrypted, the joint prior distribu-
tion of Y and f(X̂

∗
) are given by the following equation:[

Y

f(X̂
∗
)

]
∼ N

( [
0
0

]
,

[
K(X̂, X̂) + σ2I K(X̂, X̂

∗
)

K(X̂
∗
, X̂) K(X̂

∗
, X̂

∗
)

])
.

(12)
By conditioning the joint Gaussian prior distribution on Y , the
posterior distribution of f(X̂

∗
) can be analytically derived as

p(f(X̂
∗
)|(X̂,Y , X̂

∗
)) ∼ N (f(X̂

∗
), σ2(X̂

∗
)), (13)

where the prediction mean and variance are given by

f(X̂
∗
) = K(X̂

∗
, X̂)T [K(X̂, X̂) + σ2I]−1Y

σ2(X̂
∗
) = K(X̂

∗
, X̂

∗
)−K(X̂

∗
, X̂)T [K(X̂, X̂)

+σ2I]−1K(X̂
∗
, X̂

∗
). (14)

Equation (14) shows that the prediction mean and variance are
determined by the kernel function of encrypted input X̂ , X̂

∗
,

and output Y .

C. Encryption Based on Random Unitary Transform

Secure sparse coding methods based on random unitary
transformation have been explored in previous studies [7]-
[10]. This paper was inspired by those studies. An input
xi ∈ RD is encrypted by a unitary matrix Qp ∈ CD×D with
a private key p as follows:

x̂i = xiQp, (15)

where x̂i is an encrypted input signal. Note that the unitary
matrix Qp satisfies

QH
p Qp = I, (16)

where [·]H stands for the Hermitian transpose operation and
I stands for the identity matrix. In addition to the unitary
matrix, Qp must have randomness for generating the encrypted
data. Gram-Schmidt orthogonalization is a typical method
of generating Qp. The encrypted data has the following
properties:

· Property 1: L2 norm isometry

||xi||22 = ||x̂i||22

· Property 2: Conservation of Euclidean distances

||xi − xj ||22 = ||x̂i − x̂j ||22

· Property 3: Conservation of inner products

xH
i xj = x̂H

i x̂j

We consider applying the random unitary transform to a kernel
function. When using an RBF kernel for the encrypted input
X̂ for training, the following relation is satisfied:

K(x̂i, x̂j) = θ1 exp

(
−|x̂i − x̂j |2

θ2

)
+ σ2δ(i, j)

= θ1 exp

(
−
|(xi − xj)Qp|2

θ2

)
+ σ2δ(i, j)

= θ1 exp

(
−|xi − xj |2

θ2

)
+ σ2δ(i, j)

= K(xi,xj) (17)

Aside from the RBF kernel, most typical kernels (i.e., the
rational quadratic kernel, the Matérn kernel, etc.) also satisfy
K(x̂i, x̂j) = K(xi,xj). However, some kernels do not hold.
Similarly, the following relation holds for the encrypted input
X̂

∗
for testing:

K(x̂∗
i , x̂

∗
j ) = K(x∗

i ,x
∗
j ). (18)

However, the kernel function between the encrypted input X̂
for training and the encrypted input X̂

∗
for testing do not

match the kernel function for the non-encrypted data. This is
because the encrypted training signal X̂ and the encrypted
test signal X̂

∗
are encrypted using different random unitary

transforms Qp and Qq .

K(x̂∗
i , x̂j) = θ1 exp

(
−|x̂∗

i − x̂j |2

θ2

)
+ σ2δ(i, j)

= θ1 exp

(
−
|xiQq − xjQp|2

θ2

)
+ σ2δ(i, j)

̸= K(xi,xj). (19)

When the random unitary transform is generated using the
same private key (p = q) for training and testing, K(x̂∗

i , x̂j) =
K(xi,xj) is satisfied. Therefore, from Eqs. (9) and and (14),
when using the same private key (p = q), the prediction mean
and variance estimated by secure GPR are equal to those by
GPR for non-encrypted data:

f(X̂
∗
) = f(X∗) (20)

σ2(X̂
∗
) = σ2(X∗). (21)

We can use the keys p and q to control privacy. For legitimate
users, we distribute the same key (p = q).

IV. NUMERICAL DEMONSTRATIONS

We performed the following experiments using diabetes data
from the medical analysis field and synthetic data to investigate
the effectiveness of our scheme.

A. Simulation Conditions

The diabetes data includes quantitative measures for 442
diabetes patients on 10 baseline variables such as age, gender,
BMI, and disease progression one year after baseline [15] [16].
Our secure GPR (secGPR) predicted a measure of disease
progression from the 10 baseline variables. The input X was
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TABLE I
MEAN SQUARE ERROR (MSE) AND PEARSON PRODUCT-MOMENT

CORRELATION COEFFICIENT (PPMCC) BETWEEN DISEASE PROGRESSION
Y ∗ ESTIMATED BY GPR AND S∗ ESTIMATED BY SECGPR.

(a) RBF kernel
Private key p = q p ̸= q

MSE 2.16× 10−24 8044
PPMCC 1.0 -0.30

(b) Rational quadratic kernel
Private key p = q p ̸= q

MSE 2.10× 10−18 8040
PPMCC 1.0 -0.30

(c) Matérn kernel
Private key p = q p ̸= q

MSE 1.16× 10−24 7611
PPMCC 1.0 -0.19

set as the test data of 10 baseline variables (i.e., D = 10), and
the output Y was set as the disease progression. Data from
353 patients was used for learning (N = 397) and data from
89 patients was used for testing (M = 45).

The input X was encrypted using the random unitary
transform Qp that was generated by the following equation.

Qp = HPRGp, (22)

where Gp is generated by the Gram-Schmidt orthogonaliza-
tion. HPR is a permutation matrix of D ×D dimension that
randomly replaces each element of the input signal x ∈ RD.
An example of a matrix when the number of dimensions of
the input data is D = 4 is shown below.

HPR =


0 1 0 0
0 0 0 1
0 0 1 0
1 0 0 0

 . (23)

Since both HPR and Gp have a unitary matrix, Qp satisfies
the condition of the random unitary matrix:

QH
p Qp = (HPRGp)

H(HPRGp) = (GH
P HH

PR)(HPRGp)

= I. (24)

B. Estimation Accuracy

The estimation accuracy of secGPR was compared with that
of GPR for non-encrypted data based on the similarity between
disease progression Y ∗ estimated by GPR and S∗ estimated
by secGPR. The MSE and PPMCC were used as similarity
indexes:

MSE =
1

N

N∑
i=1

(y∗i − s∗i )
2 (25)

PPMCC =

∑N
i=1(y

∗
i − y∗)(s∗i − s∗)√∑N

i=1(y
∗
i − y∗)2

√∑N
i=1(s

∗
i − s∗)2

,(26)

where y∗i ∈ Y ∗ is disease progression estimated by GPR
and s∗i ∈ S∗ is disease progression estimated by secGPR. y∗

(a) p = q (b) p ̸= q

Fig. 2. Relationship between disease progression y∗i estimated by GPR and
s∗i estimated by secGPR when using RBF kernel.

and s∗ are the respective average values. When the PPMCC
is close to 1, there is a strong correlation, and secGPR can
estimate the same values as GPR. We evaluated three kernels
(RBF, rational quadratic, and Matérn). Two patterns were
verified for the random unitary transform for encrypting the
training and testing data: one when the same private key
(p = q) was used and the other when different private keys
(p ̸= q) were used.

Table I shows the MSE and PPMCC between Y ∗ and S∗.
When the private keys are the same (p = q), secGPR has
small a MSE and the PPMCC = 1, meaning the estimation
performance of secGPR does not deteriorate compared with
GPR. However, when the private keys are different, the MSE is
large and the PPMCC is small. Figure 2 shows the relationship
between the disease progression y∗i and s∗i when using the
RBF kernel. It shows that the output Y ∗ estimated by secGPR
is almost the same as that of GPR when p = q. Similar
results were obtained when used with other two kernels. Table
I and Fig. 2 show that security can be controlled using Qp for
training and Qq for testing.

C. Security Strength

1) Key Space: We evaluated the safety of the encrypted
input X̂ = XQp in terms of the key space of Qp. The
key space is calculated assuming a case of restoration by
brute force attack. We consider a case of the random unitary
transform being generated by Eq. (22) (i.e., Qp = HPRGp).

First, elements of the unitary transform are limited to real
numbers (orthogonal matrix) for Gp. The degree of freedom
is D2, which is equal to the number of matrix elements. How-
ever, the unitary matrix is subject to the following conditions:

1) The column vectors of the unitary matrix are orthogonal
to each other. The number of conditional expressions
imposed is DC2 = D(D − 1)/2 (number of combina-
tions that select two from D column vectors) from the
condition.

2) The norm of each column vector = 1. The number of
conditional expressions imposed is D from the condi-
tion.
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TABLE II
ABSOLUTE VALUE OF PPMCC FOR DIABETES INPUT X (D = 10).

Ave Max Min
PPMCC 0.122 0.526 8.51× 10−6

Therefore, the degree of freedom is D2 − [D(D − 1)/2 +
D] = D(D − 1)/2 for the random unitary transform Gp.
Assuming each element is represented by an 8-bit fixed point
number, the size of the key space is 8D(D−1)/2. Next, the
combination pattern is D! for the permutation matrix HPR.
Therefore, the size of the key space of the random unitary
transform Qp(= HPRGp) is 8D(D−1)/2×D!. Compared with
the key space used in the Advanced Encryption Standard, the
key space is wider than the 128-bit case and narrower than
the 256-bit space when the number of elements used in this
simulation is D = 10. If D is 13 or more, it will be wider
than the 256-bit key space.

2) Irreversibility: We investigated the security strength of
the encrypted input X̂ = XQp via simulations. The security
strength was evaluated based on the absolute value of the
PPMCC between the original input X and the decrypted input
X̂QH

q that was attacked by the illegitimate users (i.e., p ̸= q).
Generally, the two samples can be regarded as uncorrelated
when the absolute value of the PPMCC between two data
samples is less than 0.2. We assumed 100 legitimate users (i.e.,
generated 100 kinds of random unitary matrices Qp). Then the
illegitimate users tried to decrypt each piece of encrypted input
using 100 kinds of random unitary matrices Qq that differed
from the ones used in encryption. We tested 10,000 matrix
combination patterns.

Table II shows the average, maximum, and minimum val-
ues of the absolute PPMCC for diabetes data. The absolute
PPMCC is small on average, but the maximum value is
relatively large. The key space is not considered to be large
enough when the dimension D = 10. Figure 3 shows the
absolute value of the PPMCC for synthetic input X . The
input data X (in which each element follows a normal
Gaussian distribution) was generated with different dimensions
(D = 5, 10, 20, 50, 100). The absolute value of the PPMCC
clearly decreases as the dimension D increases. If D is greater
than around 30, both the average value and the maximum
value are less than 0.2. From the perspective of irreversibility,
security is stronger when the dimension D is higher. Future
study will need to consider security when the D value is small.

V. CONCLUSIONS AND FUTURE WORK

We proposed GPR for encrypted data generated based on
random unitary transformation. Our practical GPR scheme
enables computation on encrypted data. We proved that our
GPR for encrypted data has exactly the same regression
performance as the non-encrypted variants of the GPR scheme.
We determined its effectiveness using diabetes data from the
medical analysis field and synthetic data.

Fig. 3. Absolute value of PPMCC for synthetic input X .

We will research further on the security strength when
the dimension of the input data is low. In addition, we
will consider applications for high-dimensional cases such as
image processing.
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