
Classification Error Approximation
of a Compressed Linear Softmax Layer

Diana Resmerita
Université Côte d’Azur, CNRS, I3S and

Kalray, France

Rodrigo Cabral Farias and Lionel Fillatre
Université Côte d’Azur, CNRS, I3S

France

Benoı̂t Dupont de Dinechin
Kalray
France

Abstract—Deep neural networks need to be compressed due to
their high memory requirements and computational complexity.
Previous papers have proposed numerous methods to quantize
the weights with a single bit or more. However, the loss of
accuracy involved in the compression is scarcely studied from
a theoretical point of view. Motivated by the rate-distortion
theory, we propose a new distortion measure which assesses the
gap between the Bayes risk of a classifier before and after the
compression. Since this distortion is not easily tractable, we derive
a theoretical approximation when the last fully connected layer
of a deep neural network is compressed under the assumption
that the layer inputs follow a multivariate normal distribution.
Numerical results show that the approximation performs well
on both synthetic and real data. We also show that heuristic
quantizers proposed in the literature may not be optimal.

I. INTRODUCTION

Deep Neural Networks (DNNs) are used in many computer
vision applications such as object recognition, object detection
and segmentation [1]. Unfortunately, the outstanding perfor-
mance of these models comes at the expense of a highly
complex architecture, requiring large amounts of memory,
processing power and energy. This makes them difficult to
deploy on embedded systems (e.g. autonomous vehicles).

To deal with these issues, several approaches have been
proposed to reduce the size of the network with little to no
loss in accuracy. New architectures with a smaller number of
parameters have shown good results [2], [3]. Other approaches
focus on reducing large neural networks with compression
methods by pruning [4], [5] and quantizing [6]–[11] their
weights or by efficiently computing their low-rank tensor
approximation [12]. In some works, these methods are ap-
plied during training [9], while in others, the compression
is applied post-training [13]. The majority of works deals
with deterministic methods. Stochastic methods [14] are harder
to implement, as mentioned in [8]. In the case of binary
quantization and uniform 8-bit quantization, state-of-the-art
compression methods for image classification, like XNOR-
NET [9] and TensorFlow Lite (TFLite) [10], [11], are proposed
with rules for choosing adequate quantization parameters.
What perturbation can we expect for a given model? And,
furthermore, what affects the loss of accuracy in a model?
When compressing a model, we are interested in obtaining a
good trade-off between the number of bits used to represent
the weights and the accuracy loss, viewed as a distortion
measure, between the original and the compressed model.

This fundamental problem has already been handled in rate-
distortion theory [15] for data compression. Additionally, a
number of works [14], [16], [17] emerged on the subject
of neural network sensibility and error analysis for different
purposes such as optimization, generalization, robustness and,
of course, compression. We take inspiration from the rate
distortion theory and state-of-the-art approaches to propose
a theoretical approximation of the accuracy loss when the
last fully connected layer of a deep neural network is com-
pressed. We simplify the study by assuming that the inputs
are drawn from Gaussian distributions. Through simulations
with synthetic data and with a real classification dataset,
Sonar [18], we show that when the perturbations are due
to compression, either with 1-bit, 3-bit or 8-bit, quantization
parameters minimizing the increase in the classification risk
may not correspond to those given by XNOR-NET and TFLite.

The outline of this paper is the following. Section II presents
the neural networks architecture, our working assumptions
and the distortion measure we seek to minimize for neural
network compression. Section III proposes an approximation
of the distortion measure. Section IV shows the quality of our
distortion approximation on synthetic and real data. Finally, in
Section V, we conclude and present our future work.

II. PROBLEM STATEMENT

A. Deep neural networks

We consider a classification problem between two classes
C0 and C1. We process a couple (x,y) where x ∈ Rn

represents the input and y = (y0, y1) ∈ R2 is the true label.
The label satisfies y0 > y1 when the true class is C0 and
y0 ≤ y1 when the true class is C1. This corresponds to the
usual one-hot encoding of a binary label [1]. To decode the
label, we use the decoding rule:

δ(y) = arg max
i∈{0,1}

yi. (1)

Let us consider a deep neural network f(x) composed of K+1
layers with f0 being the input layer f0(x) = x ∈ Rn0 where
n0 = n. The hidden layers are from f1 to fK−1 and the output
layer is denoted with fK . We define the model as follows

fk(x) = σ(Wkfk−1(x) + bk), 1 ≤ k < K, (2)
ŷ = f(x) = fK(x) = softmax(WfK−1(x)+b), (3)

1446ISBN: 978-9-0827-9706-0 EUSIPCO 2021

where Wk ∈ Rnk×nk−1 , bk ∈ Rnk and σ(·) is a nonlinear ac-
tivation function (typically, the ReLU function). The last layer,
called the linear softmax layer, depends on W ∈ R2×nK−1

and b ∈ R2. The output of the neural network ŷ = (ŷ0, ŷ1)
is interpreted as a soft one-hot encoding vector. The decision
rule, denoted δf (x), is

δf (x) = δ(f(x)) = δ(ŷ), (4)

and chooses the most probable component of ŷ. The classifi-
cation performance of a neural network is measured with the
Bayes risk function r(δf):

r(δf) = P(δf (x) 6= δ(y)) (5)

where P(·) stands for the joint probability measure of the
couple (x,y). The Bayes risk is equal to 1 − acc(δf) where
acc(δf) is the usual accuracy of the neural network.

B. Assumption on the distribution of the last hidden layer

It has been shown in the literature that the first layers of
deep neural networks are regularizing the input data such that
the probability distribution becomes more similar to a normal
distribution in the latest layers [13], [19]. In this paper, we
consider that the vector fK−1 follows a multivariate normal
distribution. In the case of two classes, we assume that

fK−1 ∼ N (µj ,Σj) under Cj , (6)

where µj is a known mean vector and Σj is a known strictly
positive definitive covariance matrix. We are aware that the
distribution of weights and inputs depend on many different
factors: the architecture of the network, initialization, training.
These assumptions have been made to simplify the theoretical
model. We have experimented and analyzed various architec-
tures, especially the Fully Connected and Convolutional Neu-
ral Networks [20], [21]. For these networks, we found that both
the weights and inputs tend towards a Gaussian distribution.
To support this assumption, [19] shows the weight distribution
and the density function curve of the corresponding Gaussian
distribution for each layer in ResNet-18b. A normality test
has also been conducted and the results indicate a good
normal distribution fitting. Both [16] and [17] assume that the
inputs and weights are drawn from a Gaussian distribution. In
practice, the distribution is not always Gaussian. Fortunately,
in the case of the softmax linear layer, the central limit theorem
may ensure the Gaussian distribution.

C. Neural network compression

Consider an already trained neural network (3). Let U be
the compressed form of W. We assume that the weights
of the matrix W are independent and identically distributed.
Under this setting, classical rate-distortion theory [15, p. 301]
describes the minimum transmission bit-rate R required for
transmitting the weights U instead of W under a constraint on
the maximum distortion D between them. Common distortion
functions D correspond to measures of the gap between
individual elements of W and U. Note that the goal we pursue
in the analysis of the effects of compression in deep neural

networks is rather different than the one in the setting above.
We are not interested simply in reconstructing W from U,
but in obtaining U such that the neural network accuracy will
not change much. As a consequence, our distortion measure
is defined over all the values (W,U) as follows.

Definition II.1. A distortion measure is a mapping

d : Rn × Rn → R+, (W,U) 7→ d(W,U). (7)

It is a measure of the change in accuracy d(W,U) induced
by representing the weights W by U.

In [22], the rate-distortion theory is used to analyze the
approximation of the posterior function involved in the Bayes
classifier, not the accuracy loss. This theory is also used in [16]
to analyze the Kullback-Leibler (KL) divergence between the
classifier before and after the compression. However, as shown
in [23], the KL divergence does not always reflect the accuracy
loss when compressing a model. For this reason, we define a
particular distortion measure based on the classification risk.

To distinguish the network before and after the compres-
sion, we use the notation fW and, respectively fU, for the
uncompressed, resp. compressed, neural network. We are not
interested in how U was produced from W, but we want
to measure the gap between the risks r(δfW) and r(δfU).
Hence, we consider the distortion function to be the absolute
difference between the risks of the two classifiers:

d(W,U) = |r(δfW)− r(δfU)|. (8)

We are seeking the optimal number of bits that allows us to
minimize the distortion error. Hence, this paper focuses on the
study of the distortion measure (8). This will bring us closer to
understanding the impact of compression methods on the last
layer of a neural network and determine the minimal number
of bits needed to ensure the quality of the classification.

III. THEORETICAL ANALYSIS OF THE DISTORTION

Following [24], the Bayes risk (5) for δf is rewritten as

r(δf) = π0P0(δf (x) = 1) + π1P1(δf (x) = 0), (9)

where πj is the known prior probability of class Cj and Rj(δf)
is the conditional risk (knowing the true class) given by

Rj(δf) = Pj(δf (x) 6= j), (10)

where Pj(·) stands for the normal distribution N (µj ,Σj).

A. Compressed and uncompressed classifiers

Let us note first that we can rewrite δfW as a linear classifier
without the operators argmax and softmax. The decision rule
(4) is equivalent to the linear decision rule:

δfW(fK−1) =

{
0 if w̃T fK−1 > λ,
1 otherwise, (11)

where w̃ = w0 − w1, λ = b1 − b0 and w̃T denotes the
transpose of w̃. Note that w0 and w1 represent the first and
the second row of W and b0, b1 are the two components of
the bias vector b. To simplify the notations, the vector fK−1

1447

will be denoted f in the rest of the paper. We want to compare
this classifier with the compressed version

δfU(f) =

{
0 if ũT f > λ,
1 otherwise, (12)

where ũ = u0 − u1, u0 and u1 represent the first and the
second rows of U. To simplify the study, we do not quantify
b but our approach can be easily extended to this case.

Since f follows a Gaussian distribution, w̃T f also follows
a Gaussian distribution

w̃T f ∼ N (w̃Tµj , w̃
T Σjw̃). (13)

Let Φ(·) be the cumulative distribution function of the standard
normal distribution and φ(·) its probability density function.
The risk r(δfW) can be calculated from (9) by noting that

R0(δfW) = Φ

(
w̃Tµ0 − λ√
w̃T Σ0w̃

)
, (14)

R1(δfW) = 1− Φ

(
w̃Tµ1 − λ√
w̃T Σ1w̃

)
. (15)

The calculation of (14)-(15) comes from the error analysis of a
linear classifier as detailed in [24]. Similar results are obtained
for the classifier with the compressed weights U.

B. Distortion measure for classifiers

Using the risk from (9), we can rewrite (8) as follows

d(W,U)=

∣∣∣∣∣
1∑

i=0

πi[Pi(fW(x)>λ)−Pi(fU(x)>λ)]

∣∣∣∣∣ . (16)

The distortion d(W,U) can be easily computed by using (14)-
(15). However, a numerical computation does not offer any
information on the joint role of W and U. In other words,
we do not gain any insight into the quality of the compression
process applied to W in order to obtain U. For this reason,
we propose a bound which joins together W and U.

Let us define the conditional gap

di(W,U) =| Pi(fW(x)>λ)−Pi(fU(x)>λ) | (17)

as the gap between the probability errors conditioned by the
class Ci. It follows that

d(W,U) ≤ π0d0(W,U) + π1d1(W,U). (18)

Using [25, Chap. 1, inequality 1.3.c], we get that

di(W,U) ≤ Pi(fW(x)>λ, fU(x)≤λ)

+Pi(fW(x)≤λ, fU(x)>λ). (19)

Hence, the conditional gap is bounded by the sum of the
probabilities when the classifiers disagree. It is equivalent to

di(W,U) ≤ Pi(w̃
T f>λ,ũT f≤λ)

+Pi(w̃
T f≤λ,ũT f>λ). (20)

This form is simpler because it involves the couple of variables
(w̃T f , ũT f) that follows a bivariate normal distribution with

a non-zero correlation coefficient. The distribution of this
random couple is studied in the following lemma.

Lemma 1. Let i ∈ {0, 1}. Then, we have the equalities

Pi(w̃
T f > λ, ũT f ≤ λ) = Pi(X > αi,W, Y ≤ αi,U), (21)

Pi(w̃
T f ≤ λ, ũT f > λ) = Pi(X ≤ αi,W, Y > αi,U), (22)

where X and Y denote two standard normal variables with
correlation coefficient %i such as

αi,W =
λ− w̃Tµi√
w̃T Σiw̃

, αi,U =
λ− ũTµi√

ũT Σiũ
, (23)

%i = %(i,W,U) =
w̃T Σiũ√

w̃T Σiw̃
√
ũT Σiũ

. (24)

Proof. We normalize the component w̃T f by removing its
mean and dividing it by its standard deviation given in (13).
We do the same for the component ũT f . A short calculation
yields the correlation coefficient.

It is well known that the bivariate normal distribution is
not easy to compute except for some very specific cases.
Fortunately, some accurate approximations exist. In this paper,
we use the simple approximation given in [26] which is easy
to interpret. By applying this approximation to (21), we get

Pi(X > αi,W, Y ≤ αi,U) ≈ Φ(−αi,W)Φ (−ξi,W,U) , (25)

ξi,W,U=
%i µ(αi,W)−αi,U√

1− %2i
, µ(αi,W)=

φ(αi,W)

Φ(−αi,W)
. (26)

This approximation expresses the probability as a product of
two simple terms. The first term depends only on W and
is thus independent from the compression. The second term
quantifies the dependency between W and its compressed
form U through ξi,W,U. We can do the same for the second
inequality (22) in Lemma 1. Finally, we get an approximation
Di(W,U) of the upper bound di(W,U) in (20):

di(W,U) ≤ Pi(w̃
T f>λ,ũT f≤λ)+Pi(w̃

T f≤λ,ũT f>λ)

≈ Φ(−αi,W)Φ (−ξi,W,U) +Φ(−αi,U)Φ (−ξi,U,W)

= Di(W,U), (27)

where ξi,U,W is similar to ξi,W,U provided that we swap
the role of W and U. Therefore, we get the following
approximation D(W,U) of d(W,U):

d(W,U)≈π0D0(W,U)+π1D1(W,U)=D(W,U). (28)

This approximation is a closed form expression. Even if we
cannot ensure that D(W,U) is truly an upper bound, the
advantage of using the approximation D(W,U) over the true
value d(W,U) is to ease the interpretation of the effects of
compression over the accuracy. By analyzing the expression
of the approximation, one can note that its value mainly
relies on three quantities: αi,W in (23), αi,U in (23) and
the correlation %i between the compressed and uncompressed
weights in (24). The constant αi,W depends on properties
of the dataset (the means of the classes) and not on the

1448

compressed network architecture. The value αi,U depends on
the compressed network. Under some appropriate assumptions
on the number of neurons and the compression bit-rate, αi,U

can be approximated by αi,W weighted by a corrective term
depending on %i. Under the same assumptions, the correlation
%i can be approximated analytically as a function of the num-
ber of neurons of a layer and the compression bit-rate. Further
details and a more in-depth analysis of these approximations
in the case of uniform quantization are presented in [27].

IV. EXPERIMENTS

Several experiments were carried out in order to analyze the
proposed approximation D(W,U) in (28). The first experi-
ment was done using a softmax classifier on synthetic data,
while the second one was performed on a one-hidden-layer
network trained on the Sonar dataset.

We used the standard binary and uniform quantization to
compress the weights W into Us where Us underlines that
the compressed weights U depend on a scaling factor s > 0
to tune. The binarization process produces Us = s · sign(W),
where sign(W) means that the element-wise sign function
is applied to each element of W. The uniform quantization
produces Us = round

(
W
s

)
, where the element-wise round(·)

operation approximates its input with the closest integer.
We are looking for the best scaling factor s that minimizes

d(W,Us). For both experimental settings, we iterated over
s from 0 to 2 by a step of 10−3. At each iteration, we
compressed the weights with the methods mentioned above.
When we use the synthetic data, we computed the theoretical
distortion d(W,Us) and its approximation D(W,Us). For
the real dataset, we cannot compute the theoretical distortion
because we do not know the exact parameters of the assumed
normal distribution. We estimated the values of µ0, µ1, σ0 and
σ1 in (6) from the samples. Then, we computed d̃(W,Us)
and D̃(W,Us) by replacing the true values µ0, µ1, σ0 and
σ1 by their estimates in the definition of d(W,Us) and
D(W,Us). In both datasets, we evaluated the empirical dis-
tortion d̂(W,Us) by computing the empirical Bayes risks. The
minimum of d(W,Us) with respect to s is denoted min(d).
We use the same notation min(·) for the other distortions. We
also take a look at the true Bayes risk r(δfUs

) for the synthetic
data and at the empirical risk r̂(δfUs

) for the real data.
Additionally, we compared our results to two state-of-the-art

methods that have shown promising results, namely XNOR-
NET [9] for binary quantization and Tensorflow Lite [10], [11]
for uniform quantization:
XNOR-NET. XNOR-NET quantizes W by solving the opti-
mization problem min ||W − sWb||22 where Wb is a binary
matrix and s > 0. The optimal solution UsXNOR−NET is the
product of the optimal binary matrix W∗

b = sign(W) with the
optimal scaling factor sXNOR−NET = ||W||1/n where ||W||p
is the p-norm.
TFLite. The TFLite approach is based on the standard uni-
form scalar quantizer. The quantization of an entry w of W
into a quantized value u of UsTFLITE proceeds as follows:
u = round(w

sTFLITE
) + z, where the scaling factor is defined

(a) Binary quantization. (b) Uniform quantization (3 bits).

Fig. 1. Distortions d̂(W,Us), d(W,Us) and D(W,Us) for synthetic data
experiment with XNOR-NET (left) and TFLite (right) as a function of the
scaling factor. The orange circle and the green square represent respectively
the minimum of d(W,Us) and D(W,Us) and, in red, we show the scaling
factors of XNOR-NET and TFLite.

as sTFLITE = (wmax − wmin)/N with N = 2R − 1 and the
parameter z represents the quantized value of the real value
0. This method does not involve any optimization.

A. Softmax classifier on synthetic data

The experiments in this subsection were performed on syn-
thetic data by employing a binary softmax classifier without
any hidden layers. In order to train our model, we generated a
two-class dataset with N = 2× 103 samples, 103 samples per
class. Each sample of the generated data has n = 10 features
and was drawn from a multivariate normal distribution with
a given mean and covariance for each class. Following [28],
means were drawn from a 10 dimensional sphere with radius
of 1 for C0 and 5 for C1. The variance is considered spherical
with the intensity 4 for C0 and 2.25 for C1. The training leads
to a Bayes risk r(δfW) = 0.1152. We quantized the weights
of the trained model using XNOR-NET (binary weights) and
TFLite with only 3 bits due to the small number of weights
the model contains (20 values).

Fig. 1, on the left, shows the results with the binarization
(XNOR-NET) and, on the right, the results for the uniform
quantization (TFLite). It must be noted that d(W,Us) over-
laps with d̂(W,Us). We observe that D(W,Us) follows
the same shape as the actual error. Our approximation is
able to outperform XNOR-NET in terms of the obtained
optimal scaling factor: sD = 0.267 is reasonably close
to the theoretical minimum sd = 0.285 and better than
sXNOR−NET = 0.139. The Bayes risks for each scaling factor
are the following: r(δfUsd

) = 0.1751, r(δfUsD
) = 0.1752

and r(δfUsXNOR−NET
) = 0.2255. On the other hand, TFLite

proposes a scaling factor that is close to the optimal one, but
our approximation is closer: sTFLITE = 0.0976, sD = 0.106
and sd = 0.105. By looking at the risk, we see that our approx-
imation is extremely close to the theoretical minimum giving a
risk of 0.1153 and better than TFLite r(δfUsTFLITE

) = 0.1175.

B. One-hidden-layer ReLU neural network on Sonar

We also performed experiments on a one-hidden-layer neu-
ral network trained on the Sonar dataset [18]. It is composed
of N = 208 instances, n = 60 attributes and two classes.

1449

(a) Binary quantization. (b) Uniform quantization (8 bits).

Fig. 2. Distortions d̂(W,Us), d̃(W,Us) and D̃(W,Us) for Sonar dataset
with XNOR-NET (left) and TFLite (right) as a function of the scaling factor.
The orange circle and the green square represent the minimum of d̃(W,Us)
and D̃(W,Us) and the red triangles show the scaling factors of XNOR-NET
and TFLite.

The network we trained had one fully connected ReLU layer
with 60 neurons and a final softmax layer. After training, we
obtained an empirical risk r̂(δfW) = 0.0727. We quantized
the weights of the last layer using the same methods as in
the previous subsection, except, for the uniform quantization
where we used 8 bits.

In Fig. 2, on the left, we present the results obtained
using binarization and, on the right, the results with uni-
form quantization. Although the 1-bit quantization performs
slightly worse than the 8-bit quantization, both quantizations
perform well. We observe that the XNOR-NET scaling factor
sXNOR−NET = 0.4432 is far from the estimated theoret-
ical minimum sd̃ = 0.3062, while our approximation is
closer sD̃ = 0.2522. XNOR-NET has a higher Bayes risk
r̂(δfUsXNOR−NET

) = 0.0913. Our approximation gives the
same empirical risk as the one obtained with the estimated
theoretical r̂(δfUs

D̃

) = r̂(δfUs
d̃

) = 0.0865, which are closer
to the original risk. Using the uniform quantization, we ob-
serve that our approximation with sD̃ = 0.0105 is almost the
same as TFLite sTFLITE = 0.0107, both close to sd̂ = 0.0111.
The empirical risk values are all three at 0.0721. Although
the normal assumption is not perfectly satisfied in the last
layer (because of the ReLU), it is worth noting that our
approximation still performs well.

V. CONCLUSION

In this paper, we propose a theoretical analysis of the
accuracy loss of a deep neural network when the last softmax
layer is compressed. We derive an accurate closed form
approximation of this accuracy loss. Our future work will
focus on highlighting the relationship between the quantization
step and the error introduced by the approximation. We also
plan to extend our analysis to a multiclass model.

REFERENCES

[1] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT Press,
2016.

[2] F. N. Iandola, S. Han, M. W. Moskewicz, K. Ashraf, W. J. Dally,
and K. Keutzer, “Squeezenet: Alexnet-level accuracy with 50x fewer
parameters and ¡0.5mb model size,” 2016.

[3] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand,
M. Andreetto, and H. Adam, “Mobilenets: Efficient convolutional neural
networks for mobile vision applications,” CoRR, 2017.

[4] H. Mao, S. Han, J. Pool, W. Li, X. Liu, Y. Wang, and W. J. Dally,
“Exploring the regularity of sparse structure in convolutional neural
networks,” CoRR, 2017.

[5] S. Anwar, K. Hwang, and W. Sung, “Structured pruning of deep
convolutional neural networks,” JETC, vol. 13, no. 3, pp. 32:1–32:18,
2017.

[6] Y. Gong, L. Liu, M. Yang, and L. D. Bourdev, “Compressing deep
convolutional networks using vector quantization,” CoRR, 2014.

[7] P. M. Gysel, “Ristretto: Hardware-oriented approximation of convo-
lutional neural networks,” Ph.D. dissertation, University of California
Davis, 2016.

[8] I. Hubara, M. Courbariaux, D. Soudry, R. El-Yaniv, and Y. Bengio,
“Binarized neural networks,” in NIPS, 2016, pp. 4107–4115.

[9] M. Rastegari, V. Ordonez, J. Redmon, and A. Farhadi, “Xnor-net:
ImageNet classification using binary convolutional neural networks,” in
Comput. Vis. ECCV. Springer, 2016, pp. 525–542.

[10] R. Krishnamoorthi, “Quantizing deep convolutional networks for effi-
cient inference: A whitepaper,” CoRR, vol. abs/1806.08342, 2018.

[11] B. Jacob, S. Kligys, B. Chen, M. Zhu, M. Tang, A. G. Howard, H. Adam,
and D. Kalenichenko, “Quantization and training of neural networks for
efficient integer-arithmetic-only inference,” in IEEE CVPR 2018, 2018,
pp. 2704–2713.

[12] J. Cheng, P.-s. Wang, G. Li, Q.-h. Hu, and H.-q. Lu, “Recent advances in
efficient computation of deep convolutional neural networks,” Frontiers
of Information Technology & Electronic Engineering, vol. 19, no. 1, pp.
64–77, 2018.

[13] S. Han, H. Mao, and W. J. Dally, “Deep compression: Compressing deep
neural network with pruning, trained quantization and huffman coding,”
in 4th ICLR, Y. Bengio and Y. LeCun, Eds., 2016.

[14] S. Arora, R. Ge, B. Neyshabur, and Y. Zhang, “Stronger generalization
bounds for deep nets via a compression approach,” in International
Conference on Machine Learning. PMLR, 2018, pp. 254–263.

[15] T. M. Cover and J. A. Thomas, Elements of Information Theory. New
York: Wiley-Interscience, 2006.

[16] W. Gao, Y.-H. Liu, C. Wang, and S. Oh, “Rate distortion for model
compression: From theory to practice,” in International Conference on
Machine Learning. PMLR, 2019, pp. 2102–2111.

[17] S. W. Piché, “The selection of weight accuracies for madalines,” IEEE
Transactions on Neural Networks, vol. 6, pp. 432 – 445, 1995.

[18] R. P. Gorman and T. J. Sejnowski, “Analysis of hidden units in a layered
network trained to classify sonar targets,” Neural Networks, vol. 1, no. 1,
pp. 75–89, 1988.

[19] Z. He and D. Fan, “Simultaneously optimizing weight and quantizer
of ternary neural network using truncated gaussian approximation,” in
Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, 2019, pp. 11 438–11 446.

[20] K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” in 3rd ICLR, 2015.

[21] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proceedings of IEEE conference on CVPR, 2016, pp.
770–778.

[22] M. Nokleby, A. Beirami, and R. Calderbank, “Rate-distortion bounds
on bayes risk in supervised learning,” in 2016 IEEE International
Symposium on Information Theory (ISIT). IEEE, 2016, pp. 2099–2103.

[23] D. Resmerita, R. C. Farias, B. D. de Dinechin, and L. Fillatre, “Compres-
sion des réseaux de neurones profonds à base de quantification uniforme
et non-uniforme,” in Colloque GRETSI, 2019.

[24] H. V. Poor, An Introduction to Signal Detection and Estimation, 2nd ed.
Springer-Verlag New York, 1994.

[25] Z. Lin and Z. Bai, Probability Inequalities. Springer-Verlag Berlin
Heidelberg, 2011.

[26] D. R. Cox and N. Wermuth, “A simple approximation for bivariate
and trivariate normal integrals,” International Statistical Review, vol. 59,
no. 2, pp. 263–269, 1991.

[27] D. Resmerita, R. C. Farias, B. D. de Dinechin, and L. Fillatre, “Dis-
tortion approximation of a compressed softmax layer,” in 2021 IEEE
Statistical Signal Processing Workshop (SSP), 2021.

[28] M. E. Muller, “A note on a method for generating points uniformly
on n-dimensional spheres,” Comm. Assoc. Comput. Mach., vol. 2, pp.
19–20, 1959.

1450

