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Abstract—Spherical convolutional neural networks (Spherical
CNNs) learn nonlinear representations from spherical signals.
These are mathematical models for data arising in 3-D objects
and have found applications in computer vision, light detection
and ranging (LIDAR), and planning among others. The Spherical
CNN comprises a cascade of layers, each with a series of spherical
convolutions (spherical filters) followed by a pointwise nonlinearity.
This paper investigates the impact that structure perturbations
in spherical signals have on Spherical CNN outputs. We consider
general perturbations as rotation diffeomorphisms in the spherical
surface, and show that Spherical CNNs with Lipschitz filters are
stable to such perturbations. In particular, we establish that the
output difference of Spherical CNN induced by the diffeomorphism
perturbation is bounded by the perturbation size. This result also
shows the role of the nonlinearity and the architecture width and
depth, and indicates how Spherical CNNs exploit the rotational
structure of spherical signals to gain superior performance. We
corroborate theoretical findings in 3-D object classification, and
observe stable performance to rotation diffeomorphisms.

Index Terms—Spherical convolutional neural networks, spheri-
cal filters, stability analysis, rotation diffeomorphisms

I. INTRODUCTION

Data arising in 3-D applications such as object classification
in computer vision [1], panoramic video processing in self-
driving cars [2] and 3-D surface reconstruction in medical
imaging [3] can be described as belonging to a spherical surface.
We can thus model this data as spherical signals, essentially
assigning a scalar (or vector) value to each point on the
sphere, providing a mathematical representation for 3-D data
[4], [5]. Spherical signals are supported on the spherical surface
and processing such signals requires architectures capable of
exploiting this structure. In particular, we are concerned about
exploiting the rotational structure of spherical signals, which
can be captured by means of the rotation group [6], [7]. The
latter is a mathematical group defined in the space of spherical
surface equipped with the operation of rotation [8], [9]. Since
this is a group, it admits a definition of spherical convolutional
filter, which is a linear operator that computes weighted, rotated
combinations of the values of a spherical signal [10], [11].
Spherical convolutional filters effectively exploit the inherent
structure in 3-D data to extract higher-level features and are
key operators defining spherical convolutional neural networks.

Spherical convolutional neural networks (Spherical CNNs)
are information processing architectures that capture nonlinear
relationships between the 3-D data and the relevant information.
Spherical CNNs consist of a cascade of layers, each of which
applies a series of spherical convolutional filters followed by
a pointwise nonlinearity [12]. The inclusion of nonlinearities
and multiple layers dons Spherical CNNs with an enhanced

representation power, which is capable of capturing nonlinear
relationships. Inherited from spherical convolutions, Spherical
CNNs are adapted to the rotational structure embedded in
spherical signals and exhibit superior performance [12]–[15].

Considering the evident success of Spherical CNNs in pro-
cessing 3-D data, in this paper, we focus on analyzing the
properties that Spherical CNNs exhibit as they pertain to the
rotational structure present in spherical signals. To be more
precise, we characterize how spherical convolutional filters and
Spherical CNNs react to structure perturbations in input signals,
offering an insight into the reasons behind their observed suc-
cess. Our rationale is that if two images are close to each other,
the processing architectures shall yield similar outputs since
they likely capture the same information in their data structures.
We thus define a notion of rotation diffeomorphism (Def. 1)
describing general perturbations in the spherical surface [16],
which is a local rotation of the signal (i.e. a perturbation of the
spherical space where each point may be rotated by a different
angle). We prove that spherical convolutions with Lipschitz
filters are stable to diffeomorphism perturbations (Thm. 1), and
that this property is inherited by Spherical CNNs (Thm. 2).
Stability to such perturbations is of paramount importance in
3-D applications such as object identification [17], where small
changes in spherical signals may be introduced by a different
viewing angle or distance.

We start this paper by introducing spherical convolutions
built for spherical signals on the rotation group and defining
spherical convolutional neural networks (Section II). We model
general perturbations in spherical signals as rotation diffeomor-
phisms, and show that spherical convolutions with Lipschitz
filters are stable to such perturbations, i.e., the filter output
difference is bounded linearly by the perturbation size, where
the proportionality constant depends on the Lipschitz condition
(Section III). We then carry over the stability analysis from
spherical convolutions to Spherical CNNs (Section IV). These
results indicate that these architectures yield similar outputs for
signals that are perturbed by small rotation diffeomorphisms. We
corroborate theory in the problem of 3-D object classification
in Section V and draw the conclusion in Section VI.

II. SPHERICAL CONVOLUTIONAL NEURAL NETWORKS

Consider the spherical surface S2 ⊂ R3 contained in R3.
Given a Euclidean coordinate system S(x, y, z), a point u =
(xu, yu, zu) ∈ S2 can be characterized by three variables: the
polar angle θu=arctan(

È
x2u + y2u/zu)∈ [0, π] measured from

the z-direction, the azimuth angle φu=arctan(xu/yu)∈ [0, 2π)

along the xy-plane and the radial distance d =
È
x2u+y2u+z2u

1451ISBN: 978-9-0827-9706-0 EUSIPCO 2021



from the origin. Without loss of generality, we set d=1 on the
unit sphere. We can represent a point u∈S2 by the vector

u=(θu, φu)=
�

sin(θu) cos(φu), sin(θu) sin(φu), cos(θu)
�
. (1)

For points with polar angles θu = 0 or θu = π, the azimuth
angles are assumed to be zero. Spherical signal is defined as the
map x : S2 → R that assigns a signal value x(u) ∈ R to each
point u ∈ S2 on the sphere. Equivalently, it can be represented
as the map from the angular variables (θu, φu) to the real line R,
i.e. x(u) = x(θu, φu). These signals typically describe 3-D data,
e.g., LIDAR images, X-ray models, etc. In 3-D object classifi-
cation, for instance, the spherical signal may be the distance
between the object center and the farthest intersection point
along the ray direction (φu, θu), i.e., x(φu, θu) = d(φu, θu).

A. Spherical Convolution

Rotation operation. An elementary operation for spherical
signals is the rotation r, which is characterized by a rotation
point Nr ∈ S2 and a rotation angle βr ∈ [0, 2π). It displaces
points on the sphere by βr degrees along the axis that passes
through the origin and the point Nr. To describe the rotation
with angular variables [cf. (1)], let rθ : S2→R be the polar angle
displacement and rφ : S2→R the azimuth angle displacement
induced by r. We can parametrize the rotation r : S2 → S2 as

r ◦u=r◦(θu, φu)=[sin(θu+rθ(θu, φu)) cos(φu+rφ(θu, φu)),

sin(θu+rθ(θu, φu)) sin(φu+rφ(θu, φu)),

cos(θu + rθ(θu, φu))] (2)

where rθ and rφ are given by the Rodrigues’ rotation formula
[18]. Taking the azimuthal rotation as an example, the rotation
axis coincides with the z-axis of S(x, y, z), the polar angle
remains unchanged rθ(θu, φu) = 0, and the azimuth angle is
displaced by a constant rφ(θu, φu) = βr for all u = (θu, φu) ∈
[0, π] × [0, 2π). The set of rotation operations about the origin
(2) then defines a mathematical group under the operation of
composition, referred to as the 3-D rotation group SO(3) [19].
Spherical convolution. The spherical surface S2 equipped
with the rotation group SO(3) allows defining a convolution
operation for spherical signals. Given two signals x, h : S2 → R,
the spherical convolution ∗SO(3) between them is

y(u) = (h ∗SO(3) x)(u) =

Z
SO(3)

h(r−1 ◦ u)x(r) dr (3)

where y(u) is the output spherical signal, and x(r) is the concise
notation for x(r ◦u0) with u0 = (0, 0) the point given by θu =
φu = 0. Spherical convolutions exploit the rotational structure
present in spherical signals to generate higher-level features.

To describe the spherical convolution with angular variables
[cf. (1)], we first represent the rotation operation r ∈ SO(3) in
terms of the ZY Z Euler parametrization [20]

r = rφrθrρr = rzφr
ryθrr

z
ρr (4)

where rzφr
, ryθr and rzρr are the rotations along z-, y- and z-

axis, each one with a rotation angle of φr ∈ [0, 2π), θr ∈
[0, π] and ρr ∈ [0, 2π). The Euler parametrization allows us to
decompose any rotation r as three consecutive rotations. Recall
the normalized Haar measure on the rotation group [21]

dr =
dφr
2π

sin(θr)dθr
2

dρr
2π

, (5)

and we can rewrite (3) as

y(u) = (h ∗SO(3) x)(u) (6)

=
1

8π2

Z �
h
�
r−1φrθrρr

◦ u
�
x
�
rφrθrρr

��
sin(θr) dθrdφrdρr

where rφrθrρr is the rotation parametrized by the Euler angles
[cf. (4)] and r−1φrθrρr

is its inverse. By noting that rφrθrρr ◦u0 =
(θr, φr) and using the Rodrigues’ formula (2), we further get

y(θu, φu) = (h ∗SO(3) x)(θu, φu)

=
1

8π2

Z �
h
�
θu + rθ −1φrθrρr

(θu, φu), φu + rφ −1φrθrρr
(θu, φu)

�
·

x(θr, φr)
�
· sin(θr) dθrdφrdρr. (7)

where rθ −1φrθrρr
and rφ −1φrθrρr

are polar and azimuth angle dis-
placements induced by r−1φrθrρr

. We see that (7) is equivalent
to (3) while describing it with specific angular variables, based
on which we could evaluate the output of spherical convolution
mathematically. Put simply, we parametrize the spherical point
with polar and azimuth angles and the rotation operation with
Euler angles. This allows us to carry out the integral in (7)
explicitly, serving for the stability analysis in next sections.

B. Spherical convolutional neural network
Spherical convolutional neural network consists of a cas-

cade of L layers, each of which applies a series of spherical
convolutions followed by a pointwise nonlinearity. At layer
` = 1, . . . , L, there is a collection of F input features (spherical
signals) {xf`−1}Ff=1 . These features are processed by a series
of spherical convolutions to obtain intermediate features

yfg` = hfg` ∗SO(3) x
f
`−1, ∀ f = 1, . . . , F, g = 1, . . . , G, (8)

where xf`−1 is convolved with the spherical filter hfg` to output
yfg` . The latter are aggregated over index f and passed through
a pointwise nonlinearity σ(·) to generate the gth output feature

xg` = σ
� FX
f=1

yfg`

�
, ∀ g = 1, . . . , G. (9)

Operations (8)-(9) define the recursive operation at each layer,
which is equivalent to filtering F input features through a
bank of FG spherical filters, aggregating the output of each
gth filter across all F input features, and applying a pointwise
nonlinearity σ(·). The number of layers L and features F as well
as the specific form of the nonlinearity σ(·) are typically design
choices, while the collection of spherical filters H = {hfg` }`fg
are learned by minimizing some objective function over a
training set. Without loss of generality, we assume a single input
x0 = x and a single output Φ(x;H) = xL where Φ : S2 → S2
represents the nonlinear mapping given by the Spherical CNN
(9). To simplify notation, we denote the spherical convolution
as a filtering operation, i.e. y = h ∗SO(3) x := H(x).

Inherited from spherical convolutions, the Spherical CNN (9)
is designed to leverage the rotational structure embedded in 3-D
data. Thus, we expect it to exhibit strong performance on 3-D
learning tasks (in fact, this is observed in practice [12]). In next
sections, we demonstrate the perturbation stability of spherical
convolutions and further Spherical CNNs. This property illus-
trates exactly how Spherical CNNs leverage the data structure,
and help understand the observed superior performance.
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(a) Unperturbed space (b) Perturbed space

Figure 1. Rotation diffeomorphism on the sphere [cf. Def 1]. (a)
Original sphere. (b) Perturbed sphere after rotation diffeomorphism.

III. STABILITY OF SPHERICAL CONVOLUTIONS

Adopting the spherical convolution as the main operation
to process spherical signals exploits the rotational structure of
3-D data and exhibits improved performance. In this section,
we explore the effect that structure perturbations in spherical
signals have on the output of spherical convolution, to explain
theoretically its superior performance.

A. Diffeomorphism perturbation

In general, we are interested in how the processing archi-
tecture based on spherical convolutions fares when acting on
two signals that are similar, but not quite the same. In a sense,
we want the architecture to yield a similar output if the input
is perturbed by small changes probably due to noise or other
unimportant causes [22], [23].

Denote by ru ∈ SO(3) the rotation operation that maps
the point u0 = (0, 0) ∈ S2 to the point u ∈ S2 along the
shortest arc, i.e. u = ru ◦u0. We are interested in perturbations
in the spherical surface τ : S2 → S2 that can be described
as local rotations, i.e. rotations whose characterization changes
depending on the specific point u to which it is applied. Let
τ ◦ u be the resulting point after the perturbation τ is applied.
We can similarly obtain the point τ ◦u = rτ◦u ◦u0 by applying
the rotation rτ◦u to u0. Combining these notions of ru and rτ◦u
we formally define a diffeomorphism perturbation as follows.

Definition 1 (Diffeomorphism perturbation). Let τ : S2 → S2
be a diffeomorphism, i.e. a bijective differentiable function
whose inverse τ−1 : S2 → S2 is differentiable as well.
This diffeomorphism can be used to define a local rotation
τu ∈ SO(3) as

τu = rτ◦u ◦ r−1u , ∀ u ∈ S2. (10)

The diffeomorphism perturbation is the set of local rotations
{τu}u∈S2 [cf. (10)] that satisfy ‖τ‖ <∞ and ‖∇τ‖ <∞ for

‖τ‖ := max
u∈S2

n
βτu

o
, (11)

where βτu is the rotation angle of the local rotation τu [cf. (10)];
and for

‖∇τ‖ = max
(θu,φu)∈[0,π]×[0,2π)

§���∂τθ
∂θu

���,
���∂τφ
∂φu

���
ª
. (12)

where τθ and τφ are polar and azimuthal angle displace-
ments induced by τ such that τθ(θu, φu) = τθu(θu, φu) and
τφ(θu, φu) = τφu (θu, φu) at each point u ∈ S2. The signal
resulting from a diffeomorphism perturbation to the spherical
structure of a given signal x is denoted as xτ such that

xτ (u) = x(τ ◦ u) , ∀ u ∈ S2. (13)

The diffeomorphism τ applied to the spherical signal is called
a rotation diffeomorphism.

The rotation diffeomorphism is, essentially, a set of local
rotations where rotation axes and rotation angles depend on
specific points on the sphere. We remark that since rotations
can displace a point u ∈ S2 to any other point on the sphere,
this representation can actually model any structure perturbation
in the spherical space. We measure the perturbation size by
‖τ‖ and ‖∇τ‖ [cf. (11), (12)], and an example of a rotation
diffeomorphism is illustrated in Fig. 1 [16].

B. Stability to diffeomorphism perturbations

We have now defined diffeomorphism perturbations of the
signal, as those that modify the underlying space S2 by using
local rotations, i.e. rotations whose size depends on the specific
point in space. Before claiming our main result, we first define
the normalized spherical norm to quantify spherical signals.

Definition 2 (Normalized spherical norm). For a spherical
signal x : S2 → R, the normalized spherical norm is defined as

‖x‖ =
� 1

2π2

Z
x(θu, φu)2dθudφu

� 1
2
. (14)

where θu ∈ [0, π] and φu ∈ [0, 2π) describe the signal support
in the spherical coordinate system [cf. (1)]. For a collection of
signals x = {xf}Ff=1, we define ‖x‖ =

PF
f=1 ‖xf‖.

This is a proper norm in the sense that it is (i) absolutely
scalable, (ii) positive definite, and (iii) satisfies the triangular
inequality. It allows us to define the normed space L2(S2) =¦
x : S2 → R : ‖x‖ < ∞

©
that collects finite-energy

spherical signals. Without loss of generality, any valid norm
can be applied here for the stability analysis. We adopt the
above norm corresponding to our mathematical descriptions for
spherical signals [cf. (1)]. Next, we restrict our attention to the
family of Lipschitz filters.

Definition 3 (Lipschitz filter). A filter h : S2 → R is a Lipschitz
filter, if there exists a constant Ch such that

|h(u)| ≤ Ch ,
|h(u1)− h(u2)|
‖u1 − u2‖2

≤ Ch (15)

for all u, u1, u2 ∈ S2, where ‖ · ‖2 is the Euclidean norm in R3.

Now we can formally characterize the stability of the spheri-
cal convolution to diffeomorphism perturbations [cf. Def. 1] in
the input spherical signal.

Theorem 1 (Stability of spherical convolutional filters). Let
x ∈ L2(S2) be a spherical signal, and H be a Lipschitz spherical
convolutional filter w.r.t. Ch [cf. Def 3]. Consider a rotation
diffeomorphism τ [cf. Def 1] that satisfies

‖τ‖ ≤ ε , ‖∇τ‖ ≤ ε ≤ 1

2
. (16)

Then, for the perturbed signal xτ [cf. (13)] it holds that

‖H(x)−H(xτ )‖ ≤ 8Chε‖x‖+O(ε2) (17)

where ‖ · ‖ is the normalized spherical norm [Def. 2].

Proof. See the extended version [24].
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Figure 2. 3-D model (left) and spherical signal (right) of a chair.

Theorem 1 establishes that spherical convolutional filters are
stable to diffeomorphism perturbations in the domain. More
specifically, the difference in the output between filtering x or
a perturbed version xτ of it, is bounded. In fact, it is bounded
linearly by the size of the perturbation ε, and the proportionality
constant 8Ch depends on the spherical filter characteristics. A
careful design of the filter can reduce the constant Ch and
thus lead to more stable filters. The constant term 8 depends
on the domain, and can be improved by further restricting the
class of filters or the size of perturbations. Furthermore, the
proportionality constant is independent of the input signal x
such that the bound holds uniformly for all spherical signals.

IV. STABILITY OF SPHERICAL CONVOLUTIONAL
NEURAL NETWORKS

Spherical CNNs Φ(x;H) [cf. (9)] are information processing
architectures to learn nonlinear representations from spherical
signals. The stability of the Spherical CNN to diffeomorphism
perturbations (Def. 1) is inherited from the stability of spherical
convolutions. The inclusion of pointwise nonlinearities in the
processing pipeline affects the stability constant. In particular,
we consider nonlinearities that are Lipschitz, as defined next.

Definition 4 (Lipschitz nonlinearity). A nonlinearity σ : R→ R
satisfying σ(0) = 0 is Lipschitz if there exists a constant Cσ > 0
such that

|σ(a)− σ(b)| ≤ Cσ|a− b|, ∀ a, b ∈ R. (18)

When Spherical CNNs are built from Lipschitz filters (Def. 3)
and use Lipschitz nonlinearities (Def. 4), they pertain the
stability to diffeomorphism perturbations (Def. 1).

Theorem 2. Let x ∈ L2(S2) be a spherical signal and Φ(·;H)
be a Spherical CNN [cf. (9)] consisting of L layers, with F
features per layer, built with Lipschitz filters w.r.t. Ch [cf. Def 3]
and Lipschitz nonlinearities w.r.t. Cσ [cf. Def. 4]. Consider a
rotation diffeomorphism τ [cf. Def 1] that satisfies

‖τ‖ ≤ ε , ‖∇τ‖ ≤ ε ≤ 1

2
. (19)

Then, for the perturbed signal xτ [cf. (13)] it holds that

‖Φ(x;H)−Φ(xτ ;H)‖ ≤ 8(CσCh)LFL−1ε‖x‖+O(ε2) (20)

where ‖ · ‖ is the normalized spherical norm [Def. 2].

Proof. See the extended version [24].

Theorem 2 determines that Spherical CNNs are stable to
diffeomorphism perturbations. More concretely, the difference
between the output of a Spherical CNN applied to an input
signal and to its perturbed version is bounded proportionally to
the size of the perturbation ε. This means that if the signals

are close to each other, the outputs of the Spherical CNN will
be close as well. The proportionality constant depends on the
learned filters through Ch and depends on the neural network
design choices through F , L and Cσ . We see that the deeper
the Spherical CNN is, the looser the bound is, mainly due to
the propagation of the difference through the architecture. In
any case, the output difference of the Spherical CNN is linear
in the size of the perturbation, guaranteeing stability of the
architecture. The latter explains how Spherical CNNs exploit
the rotational structure present in 3-Data and how Spherical
CNNs maintain performance under admissible perturbations.

V. NUMERICAL EXPERIMENTS

We have proved that Spherical CNNs are stable under diffeo-
morphism perturbations. This property illustrates how Spherical
CNNs adequately exploit the data structure to improve their
learning performance. In fact, they have already been shown
successful in classification tasks [12]. Thus, in what follows,
we focus solely on corroborating theoretical findings by numer-
ical experiments with admissible perturbations; for comparative
performance with other methods, please refer to [12].
Dataset and problem setting. The shape classification problem
of 3-D object is considered on the ModelNet40 dataset [25],
i.e., given a spherical signal, the goal is to find out which class
its represented object belongs to. There are 40 classes in the
dataset, where we use 9683 samples for training and 29595
samples for testing. We parametrize the spherical signal in a
64×64 resolution; see Fig. 2 for an example of spherical signal.
Architecture and training. We consider the Spherical CNN of
8 layers, each containing 16, 16, 32, 32, 64, 64, 128 and 128
features, with the ReLU nonlinearity. For a readout layer, we
apply a global weighted average pooling for a descriptor vector
and the latter is projected into the number of object classes. We
train the architecture for 50 epochs with the ADAM optimizer
and a batch size of 16 samples. The learning rate is 1 · 10−3

and is divided by 5 on epochs 30 and 40, respectively.
Diffeomorphism types. We test the output changes of a Spheri-
cal CNN when input signals are subject to four different types of
rotation diffeomoprhisms. Namely, we carry out local rotations
along the latitude, indicating different perturbation severity. For
type 1, we rotate every other sampled point at each latitude
with a random degree drawn from [−3, 3], where we assume
the clockwise direction as the positive direction. Type 2 rotates
every other sampled point with a random degree drawn from
[−6, 6]. Type 3 considers rotations of each sampled point with
a random degree drawn from [−3, 3]. Finally, type 4 perturbs
blocks of 3 samples at each latitude separately, rotating the
second point to the third point and interpolating the values of the
remaining sampled points, where the maximal degree change
is approximately 6 degrees. Fig. 3 shows perturbed spherical
signals stemming from these four rotation diffeomorphisms.

Stability to perturbations. Table I shows the classification ac-
curacy of the trained Spherical CNN when assuming all signals
in the test set are perturbed by each of the aforementioned
diffeomorphism types. The unperturbed classification accuracy
is 0.864 for reference. In general, the Spherical CNN exhibits
strong robustness to the rotation diffeomorphism in all cases,
as expected from Theorem 2. We observe that type 1 has
little effect on the classification accuracy, while types 2 and
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(a) (b) (c) (d)

Figure 3. Rotation diffeomorphism on the spherical signal. (a) Type 1. (b) Tyep 2. (c) Type 3. (d) Type 4.

Table I: Test classification accuracy of the Spherical CNN for
Diffeomorphism 1-4. Relative root mean square error (RMSE)
of the Spherical CNN output features for Diffeomorphism 1-4.

Diffeomorphism Classification accuracy Relative RMSE
Type 1 0.863 0.0614
Type 2 0.856 0.0801
Type 3 0.858 0.0715
Type 4 0.828 0.1152

3 slightly decrease the accuracy, likely due to the increase
of the maximal degree change and the number of perturbed
sampled points. Type 4 is most severe as observed from Fig. 3d,
however, the Spherical CNN only suffers from 0.036 accuracy
loss indicating the stability of the Spherical CNN to rotation
diffeomorphisms. Similarly, Table I shows the relative root mean
square error (RMSE) of the output features of the final spherical
convolution layer under above rotation diffeomorphisms. The
relative RMSEs maintain low values in all cases, which also
implies the diffeomorphism stability. A higher classification
accuracy typically corresponds to a lower relative RMSE.

VI. CONCLUSION

This paper discussed the stability of spherical convolutional
filters and Spherical CNNs to structure perturbations in spherical
signals. We modeled general perturbations as rotation diffeo-
morphisms in the spherical space, and proved spherical filters
are stable to such perturbations by analyzing in the spherical
coordinate system with Euler parametrization. We then showed
that Spherical CNNs inherit the stability to diffeomorphism
perturbations (provided that the involved filters are Lipschitz),
and analyzed the explicit role played by the perturbation size,
filter property, nonlinearity and architecture width and depth on
the stability of Spherical CNNs. These results establish that as
long as two signals are similar, their outputs of spherical filters
and Spherical CNNs will also be similar. It illustrates the ways
in which Spherical CNNs are capable of exploiting the rotational
structure in 3-D data and thus, generalize well to unseen or
perturbed samples. These theoretical findings were corroborated
through numerical experiments of 3-D object classification.
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