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Abstract—In transfer learning, training and testing data sets
are drawn from different data distributions. The transfer gen-
eralization gap is the difference between the population loss
on the target data distribution and the training loss. The
training data set generally includes data drawn from both source
and target distributions. This work presents novel information-
theoretic upper bounds on the average transfer generalization
gap that capture (i) the domain shift between the target data
distribution P ′

Z and the source distribution PZ through a two-
parameter family of generalized (α1, α2)-Jensen-Shannon (JS)
divergences; and (ii) the sensitivity of the transfer learner
output W to each individual sample of the data set Zi via
the mutual information I(W ;Zi). For α1 ∈ (0, 1), the (α1, α2)-
JS divergence can be bounded even when the support of PZ

is not included in that of P ′
Z . This contrasts the Kullback-

Leibler (KL) divergence DKL(PZ ||P ′
Z)-based bounds of Wu et

al. [1], which are vacuous under this assumption. Moreover,
the obtained bounds hold for unbounded loss functions with
bounded cumulant generating functions, unlike the φ-divergence
based bound of Wu et al. [1]. We also obtain new upper bounds
on the average transfer excess risk in terms of the (α1, α2)-JS
divergence for empirical weighted risk minimization (EWRM),
which minimizes the weighted average training losses over source
and target data sets. Finally, we provide a numerical example to
illustrate the merits of the introduced bounds.

I. INTRODUCTION

In conventional learning, data sets for training and testing
are drawn from the same underlying data distribution. Transfer
learning considers the scenario where a learning algorithm
trained using a data set drawn from a source data distribution,
or source domain, is tested on a data set drawn from a
generally different target data distribution, or target domain.
The goal of transfer learning is to infer a model parameter
w from observation of the data from the source domain and
possibly also from target domain, so that it generalizes well
on test data from the target domain [2].

The objective of the transfer learner is to minimize the
generalization, or population, loss Lg(w), which is the average
loss of model parameter w over the test data drawn from
the target data distribution. However, this is not available at
the learner since the target domain distribution is unknown.
Instead, the learner can compute the empirical training loss
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Lt(w|ZM ) of the parameter w on the data set ZM , which is
comprised of data from source and, possibly, target domains.
We define the transfer learner as a stochastic mapping PW |ZM
from the input training set to the output space of model
parameters. The difference between the generalization loss and
the training loss, ∆L(w|ZM ) = Lg(w)− Lt(w|ZM ), known
as the transfer generalization gap, is a key metric to evaluate
the performance of a transfer learning algorithm. Specifically,
if the transfer generalization gap is small, on average or with
high probability, the performance of the model parameter w
on the training loss can be taken as a reliable estimate of the
generalization loss.

Existing works on transfer learning [3]–[6] have largely
focused on obtaining high-probability, probably approximately
correct (PAC), bounds on the transfer generalization gap.
These bounds have the general form: With probability at least
1 − δ, with δ ∈ (0, 1), over the training set ZM , the bound
|∆L(w|ZM )| ≤ ε holds uniformly for all w ∈ W . The upper
bound ε has been expressed as a function of a distance measure
d(S, T ) that quantifies the distributional shift between source
(S) and target (T ) domains. Specifically, the main goal of
these studies has been to define appropriate distance measures
d(S, T ) that can be estimated from finite data with reasonable
accuracy. For example, Ben et al. in [3] and [4] introduce the
dA distance and H ∆H -divergence respectively for the 0-1
loss, while Mansour et al. [5] proposed a discrepancy distance
that holds for any loss functions. These measures depend
on the structural properties of the model class W through
the model complexity measures such as Vapnik-Chervonenkis
(VC) dimension and Rademacher complexity. Similar high
probability bounds have also been studied for the optimality
gap, i.e., EPW |Zm [Lg(w)]−minw∈W Lg(w).

In contrast to these prior works, this paper focuses on
obtaining information-theoretic bounds on the average trans-
fer generalization gap, EPZM PW |ZM

[∆L(W |ZM )], where the
average is with respect to the training data and the transfer
learner. These bounds are fundamentally different from the
existing high-probability bounds, and thus they are not directly
comparable. Unlike the high-probability bounds which ignore
the properties of the training algorithm, the information-
theoretic bounds describe the generalization capability of
arbitrary transfer learners via their sensitivity to the input
training set.

Our work is related to the recent study in [1] on information-
theoretic bounds for transfer learning. The resulting bound
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captures the impact of the domain shift via the Kullback-
Leibler (KL) divergence DKL(PZ ||P ′Z) between the source-
domain data distribution PZ and target-domain data distribu-
tion P ′Z . The KL divergence based measure of domain shift
suffers from a serious disadvantage: it is well-defined only
when the source distribution PZ is absolutely continuous with
respect to P ′Z (PZ � P ′Z), and takes value∞ otherwise. This
results in vacuous bounds under various practical conditions,
such as for supervised learning problems where the data labels
Y are deterministic functions of the feature X within data
samples Z = (X,Y ); and when the support of the source
data distribution includes that of the target data distribution.

A. Contributions

In this work, we mitigate the above drawback of KL
divergence based bounds on average transfer generalization
gap, by using a two-parameter (α1, α2)-family of Jensen-
Shannon (JS) divergences with α1, α2 ∈ [0, 1] to capture
the domain shift. This family includes as special cases the
conventional JS divergence with α1 = α2 = 0.5, as well
as Nielsen’s symmetric α-skew and asymmetric α-skew JS
divergences [7], which corresponds to the choices α2 = 0.5
and α1 = α2 respectively. For the setting when data from both
source and target distributions are available for training, we
obtain new information-theoretic upper bounds on the average
transfer generalization gap that capture (i) the impact of the
domain shift via the (α1, α2)-JS divergence between source
PZ and target P ′Z distributions; and (ii) the generalization
capability of the transfer learning algorithm through the mutual
information between algorithm output and each individual
sample of data set. The (α1, α2)-JS divergence is bounded
for α1 ∈ (0, 1) [8, Thm. 1], and gives non-vacuous bounds
even when PZ 6� P ′Z . Moreover, the obtained bound holds for
unbounded loss functions with bounded cumulant generating
function (CGF). In contrast, the φ-divergence based bound
with φ(x) = |x − 1| in [1, Corollary 3], which also holds
when PZ 6� P ′Z , requires loss functions to have bounded
L∞-norm.

Our work is motivated by the recent study [9] that em-
ploys the conventional JS divergence, with the aim of upper
bounding the target domain generalization loss Lg(w) as a
function of the source-domain generalization loss for a fixed
model parameter w. Moving beyond [9], in this work, we
consider the performance of a training algorithm that chooses
model parameter w by minimizing the weighted average of
training losses over source and target data [1] – an approach
referred to as empirical weighted risk minimization (EWRM).
We specialize the (α1, α2)-JS divergence-based bounds on
average transfer generalization gap to EWRM, and obtain new
upper bounds on the average optimality gap for EWRM. This
is unlike prior work [1], [4], which obtain high probability
bounds on the optimality gap. We show via an example that
by choosing the parameters α1, α2, the (α1, α2)-JS divergence
can better capture the relative impact of source and target data
sets on the performance of EWRM, yielding tighter bounds
than with the conventional JS divergence.

II. PROBLEM FORMULATION

In transfer learning, we are given a data set that consists
of: (i) data points from a source domain with an underlying
unknown data distribution, PZ ∈ P(Z), defined in a subset or
vector space Z; as well as (ii) data from a target domain
with a generally different data distribution P ′Z ∈ P(Z).
Specifically, the learner has access to a training data set
ZM = (Z1, Z2, . . . , ZM ), which consists of βM , for some
fixed β ∈ (0, 1], independent and identically distributed
(i.i.d.) samples ZβM = (Z1, . . . , ZβM ) ∼ P βMZ

1 drawn
from the source domain PZ , and (1 − β)M i.i.d. samples
Z(1−β)M = (ZβM+1, . . . ZM ) ∼ P

′(1−β)M
Z from the target

domain P ′Z . The learner does not know the distributions PZ
and P ′Z . The learner uses the training data set ZM to choose
a model, or hypothesis, W from the model class W by using
a randomized learning algorithm defined by a conditional dis-
tribution PW |ZM ∈ P(W) as W ∼ PW |ZM . The conditional
distribution PW |ZM defines a stochastic mapping from the
training data set ZM to the model class W .

The performance of a model parameter vector w ∈ W on
a data sample z ∈ Z is measured by a loss function l(w, z)
where l :W ×Z → R+. The generalization loss, also known
as population loss, for a model parameter vector w ∈ W is
evaluated on the target domain, and is defined as

Lg(w) = EP ′Z [l(w,Z)], (1)

where the average is taken over a test example Z drawn
independently of ZM from the target task data distribution P ′Z .
The generalization loss cannot be computed by the learner,
given that the data distribution P ′Z is unknown. A typical
solution is for the learner to evaluate instead the weighted
average training loss on the data set ZM , which is defined as
the empirical average Lt(w|ZM ) =

γ

βM

βM∑
i=1

l(w,Zi) +
1− γ

(1− β)M

M∑
i=βM+1

l(w,Zi), (2)

where γ ∈ [0, 1] is a hyperparameter [4], [1]. We call the
algorithm that minimizes (2) as the empirical weighted risk
minimization (EWRM) algorithm. In formulation, EWRM
algorithm outputs

WEWRM(ZM ) = arg min
w∈W

Lt(w|ZM ) (3)

for input training set ZM .
The difference between generalization loss (1) and training

loss (2), known as transfer generalization gap, is defined as

∆L(w|ZM ) = Lg(w)− Lt(w|ZM ), (4)

and is a key metric that relates to the performance of the
learner. As mentioned, this is because a small transfer gen-
eralization gap ensures that the training loss (2) is a reliable
estimate of the generalization loss (1).

1We use PN
X to denote the N -fold product distribution induced by PX .
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III. α-JS DIVERGENCE-BASED BOUNDS ON AVERAGE
TRANSFER GENERALIZATION GAP

In this section, we obtain bounds on the average transfer
generalization gap ∆Lavg := EPZM PW |ZM

[∆L(W |ZM )],
where the training set distribution is given as PZM = P βMZ ×
P
′(1−β)M
Z . Towards this goal, we assume the following.
Assumption 3.1: The loss function l(W,Z) is σ2-sub-

Gaussian2 under (W,Z) ∼ PWRα1

Z , where PW is the marginal
of the joint distribution PW |ZMPZM and

Rα1

Z (z) = α1PZ(z) + (1− α1)P ′Z(z), (5)

for some α1 ∈ [0, 1], is a mixture of the source and target data
distributions.

Note that if the loss function is bounded, i.e., 0 ≤ a ≤
l(·, ·) ≤ b < ∞, Assumption 3.1 is satisfied with σ2 = (b −
a)2/4 under any data distribution Rα1

Z for α1 ∈ [0, 1].
To derive bounds on the average transfer generalization gap,

we consider the following family of (α1, α2)-JS divergences,

Dα1,α2

JS (P ′Z ||PZ) = α2DKL(P ′Z ||R
α1

Z )

+ (1− α2)DKL(PZ ||Rα1

Z )), (6)

where α1, α2 ∈ [0, 1]. We refer to Section I for connections
with existing JS divergences. Towards obtaining (α1, α2)-JS-
divergence-based bounds, we decompose the transfer general-
ization gap (4) as

∆L(w|ZM ) = γ(Lg(w)− Lt(w|ZβM ))

+ (1− γ)(Lg(w)− Lt(w|Z(1−β)M )), (7)

where Lt(w|ZβM ) =
∑βM
i=1 l(w,Zi)/(βM) is the training

loss over the source-domain data and Lt(w|Z(1−β)M ) =∑M
i=βM+1 l(w,Zi)/((1 − β)M) is the training loss of the

target-domain data. By separately bounding the average of the
two differences in the above decomposition, we obtain the
following bound.

Theorem 3.1: Under Assumption 3.1 and for (β, α2) ∈
(0, 1), the following upper bound on the average transfer
generalization gap holds for any algorithm PW |ZM ,

∆Lavg≤γσ
√

2α̂2

βM

βM∑
i=1

√
Dα1,α2

JS (P ′Z ||PZ) + (1− α2)I(W ;Zi)

+
2(1− γ)σ

(1− β)M

M∑
i=βM+1

√
2DKL(P ′Z ||R

α1

Z ) + I(W ;Zi), (8)

where α̂2 = 1/α2 + 1/(1− α2).
Proof : See Appendix A.

The first term in (8) accounts for the contribution to the
transfer generalization gap caused by the limited availability
of the source-domain data. It comprises of (i) the sensitivity
measure of the algorithm to the individual samples of the
source-domain training set captured by the mutual information

2A random variable X ∼ PX is said to be σ2-sub-Gaussian if its CGF,
logEPX [exp(λ(X−EPX [X]))], is upper bounded by λ2σ2/2 for all λ ∈ R.

I(W ;Zi); and (ii) the domain shift between source and tar-
get data distributions captured by the (α1, α2)-JS-divergence
Dα1,α2

JS (P ′Z ||PZ). The second term of (8) similarly accounts
for the contribution of the limited data from the target-
domain. It comprises of the mutual information I(W ;Zi)
which accounts for the sensitivity of the learning algorithm
to individual sample of the target-domain training set; and of
the KL divergence term DKL(P ′Z ||R

α1

Z ), which quantify the
distance between the target distribution P ′Z and the mixture
distribution Rα1

Z .
We note that the KL divergence term DKL(P ′Z ||R

α1

Z ) arises
here since the sub-Gaussianity of the loss function l(W,Z)
is assumed under (W,Z) ∼ PWR

α1

Z (Assum. 3.1). We also
note that, for α1 < 1, we have supp(P ′Z) ⊆ supp(Rα1

Z )
with supp(·) denoting the support of ‘·’, and hence the
KL divergence DKL(P ′Z ||R

α1

Z ) is well-defined. Moreover, for
fixed γ, β and M , the bound in (8) can be tightened by
optimizing over the choice of α1 and α2. For instance, for
the extreme case when γ = 0, the bound in (8) is minimized
by choosing α1 = γ = 0.

Note that the bound in (8) does not account for the case
β = 0, i.e., when only target-domain data set is available for
training. In this case, the problem reduces to the conventional
learning with PZ = P ′Z . We now specialize the bound in (8) to
the case when only data from source distribution is available
for training, i.e., when β = 1.

Corollary 3.2: Under Assumption 3.1, the following bound
holds when β = 1, ∆Lavg ≤

σ
√

2α̂2

M

M∑
i=1

√
Dα1,α2

JS (P ′Z ||PZ) + (1− α2)I(W ;Zi). (9)

The bound in (8) can be proven to hold also under the
following assumption, similar to the one considered in [10].

Assumption 3.2: The loss function l(w,Z) is σ2−sub-
Gaussian under Z ∼ Rα1

Z for all w ∈ W .
To see this, one can follow the steps in the derivation of the

exponential inequalities in Lemma A.1 of Appendix A, starting
from the additional step of averaging both sides of the inequal-
ity ERα1

Z
[exp(λ(l(w,Z)−ERα1

Z
[l(w,Z)])−λ2σ2/2)] ≤ 1 over

W ∼ PW . As discussed in [11], in general, Assumption 3.1
does not imply this assumption, and vice versa. However, both
assumptions hold when l(·, ·) is bounded.

We finally note that the (α1, α2)-JS-divergence-based
bounds on average transfer generalization gap can be general-
ized to loss functions l(W,Z) whose CGF is upper bounded
by a function Ψ(λ) for λ ∈ [b−, b+] under (W,Z) ∼ PWRα1

Z .
We refer to [12] for details. This class of functions include the
sub-Gaussian loss l(W,Z) with Ψ(λ) = Ψ(−λ) = λ2σ2/2
and b+ = b− = ∞, and the sub-gamma loss l(W,Z) with
variance parameter σ and scale parameter c, whose CGF is
upper bounded by Ψ(λ) = λ2σ2/2(1− c|λ|) for |λ| < 1/c.

A. Bound on Average Transfer Excess Risk for EWRM
In this section, we obtain an upper bound on the average

transfer excess risk of EWRM. Let

w∗ = arg min
w∈W

Lg(w) (10)
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be the optimizing model parameter of the transfer generaliza-
tion loss Lg(w). Then, the average transfer excess risk for the
EWRM algorithm is defined as

∆L∗g = EPZM [Lg(W
EWRM)]− Lg(w∗), (11)

where we have used WEWRM to denote WEWRM(ZM ) for
notational convenience.

To obtain an upper bound on the average excess risk ∆L∗g ,
we use the decomposition

∆L∗g = EPZM [Lg(W
EWRM)]− EPZM [Lt(W

EWRM|ZM )]︸ ︷︷ ︸
A

+ EPZM [Lt(W
EWRM|ZM )]− Lg(w∗)︸ ︷︷ ︸

B

. (12)

Term A in (12) corresponds to the average transfer generaliza-
tion gap for the EWRM, and hence it can be upper bounded
using (8). Using the definition (3) of EWRM, term B can be
upper bounded as

B ≤ EPZM [Lt(w
∗|ZM )]− Lg(w∗)

= γ

[
EPZ [l(w∗, Z)]− EP ′Z [l(w∗, Z)]

]
, (13)

where the last equality follows from (2) and using the identity
EP

Z(1−β)M [Lt(w
∗|Z(1−β)M )] = Lg(w

∗). Denoting the upper
bound on term A which follows from (8) as UB(WEWRM) =

γσ
√

2α̂2

βM

βM∑
i=1

√
Dα1,α2

JS (P ′Z ||PZ) + (1− α2)I(WEWRM;Zi)

+
2(1− γ)σ

(1− β)M

M∑
i=βM+1

√
2DKL(P ′Z ||R

α1

Z ) + I(WEWRM;Zi),

and combining this with an upper bound on term B yields
the following bound on the average transfer excess risk for
EWRM.

Theorem 3.3: Under Assumption 3.2, the following bound
holds for β ∈ (0, 1]

∆L∗g ≤ UB(WEWRM) + γ
√

2σ2α̂2D
α1,α2

JS (P ′Z ||PZ), (14)

where α̂2 = 1/α2 + 1/(1− α2).
We refer to [12] for proof.

IV. EXAMPLE

In this section, we consider the problem of estimating the
mean of a discrete random variable Z taking values in set Z =
{0, 1, 2}. The source domain is defined by data distributed as
Z ∼ PZ , with PZ(0) = ps and PZ(1) = 1−ps, and the target-
domain data is distributed as Z ∼ P ′Z , with P ′Z(1) = pt and
P ′Z(2) = 1 − pt. The transfer learner infers an estimate w ∈
W of the mean of the random variable Z. The loss function
l(w, z) = (w − z)2 measures the quadratic error between the
estimate w and a test input z. For a training data set ZM , the
EWRM transfer learner in (3) outputs the estimate

WEWRM =
γ

βM

βM∑
i=1

Zi +
(1− γ)

(1− β)M

M∑
i=βM+1

Zi. (15)

The average transfer generalization gap evaluates to

EPZM [∆L(WEWRM|ZM )]

= 2ν̄ − 2µtµ̄+ γ(νt + µ2
t − νs − µ2

s), (16)

where µt and νt are the mean and variance respectively of
the random variable Z ∼ P ′Z ; while µs, and νs are the mean
and variance respectively of the random variable Z ∼ PZ . The
averages in (16) can be computed explicitly as µ̄ = γµs+(1−
γ)µt and ν̄ = γ2νs/(βM) + (1− γ)2νt/((1− β)M) + (µ̄)2.

Since the support of the target-domain data distribution does
not include the support of the source-domain data distribution,
the KL divergence evaluates to D(PZ ||P ′Z) =∞. In contrast,
the (α1, α2)-JS divergence can be evaluated in closed form.
Furthermore, using (15) and the alphabet Z ∈ {0, 1, 2}, we
can, without loss of generality, consider the model parameter
space W limited to the interval [0, 2]. Therefore, the loss
function l(w, z) is bounded in the interval [0, 4], and hence
it is 4-sub-Gaussian.

Fig. 1: Average transfer generalization gap (16) (bottom) and
the (0.5, 0.5)-JS-based bound in (9) and φ-divergence based
bound in [1, Cor. 3] (top) as a function of M (when β = 1)
for varying JS divergence between P ′Z and a fixed PZ with
ps = 0.48.

In Figure 1, we compare the the average transfer generaliza-
tion gap (16) with the conventional JS-divergence bound of (9)
for α1 = α2 = 0.5 and the φ-divergence based bound in [1,
Cor. 3] with φ(x) = |x−1|, for the case when β = 1 (i.e., only
source-domain data set available for training) as a function of
increasing values of M . For fixed PZ with ps = 0.48, we
vary the JS-divergence by varying pt. As predicted by our
bound, the transfer generalization gap decreases with increase
in the number of source-data samples M available for training.
However, there exists a non-vanishing generalization gap even
at high M , which is a direct consequence of the domain
shift. Moreover, a larger JS-divergence between PZ and P ′Z
is predictive of a larger average transfer generalization gap.
Finally, we show that JS-divergence based bounds outperform
the φ-divergence based bound in [1, Cor. 3] when β = 1 at
varying JS distances.

We now study the advantage of considering the general
family of (α1, α2)-JS divergence over the JS divergence.
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Since the loss function is bounded, Assumption 3.1 holds for
mixture distribution Rα1

Z for any α1 ∈ [0, 1]. Consequently,
the bound in (8) can be tightened by optimizing over α1 and
α2. In Figure 2, we evaluate the tightness of the bound in

Fig. 2: The (α1, α2)-JS divergence based bound in (8) as a
function of α2 for varying α1 (M = 30, β = 2/3, γ = 0.3) .
(8) as a function of α2 for varying values of α1. As can be
seen, the choice (α1 = 0.1, α2 ≈ 0.2) yields the tightest
bound. Therefore, the optimizing choice of (α1, α2) does not
result in existing JS divergences which assume α2 = 0.5
(symmetric skew JS divergence) or α2 = α1 (asymmetric skew
JS divergence).

APPENDIX A: PROOF OF THEOREM 3.1
To obtain an upper bound on ∆Lavg, we use the decomposi-

tion (7) and separately bound the two differences. The average
of the first difference in (7) can be equivalently written as
EPZM,W

[Lg(W )− Lt(W |ZβM )] =

1

βM

βM∑
i=1

[
EPWP ′Zi [l(W,Zi)]− EPZiPW |Zi [l(W,Zi)]

]
(17)

and similarly EPZM,W
[Lg(W )− Lt(W |Z(1−β)M )] =∑M

i=βM+1

[
EPWP ′Zi [l(W,Zi)]− EP ′ZiPW |Zi [l(W,Zi)]

]
(1− β)M

.

(18)

We first bound the difference EPWP ′Zi [l(W,Zi)] −
EPZiPW |Zi [l(W,Zi)] in (17). Towards this, we use the
exponential inequalities in Lemma A.1 (proof included in
[12]) obtained based on the change of measure approach
adopted in [13]. Fix λ = λ1/α2 for some λ1 > 0 in (21) and
λ = −λ1/(1 − α2) in (22), and apply Jensen’s inequality to
get the following inequalities

EPWP ′Zi [l(W,Zi)]− EPWRα1
Z

[l(W,Z)] ≤ λ1σ
2

2α2

+
α2DKL(P ′Z ||R

α1

Z )

λ1
(19)

EPWRα1
Z

[l(W,Z)]− EPZiPW |Zi [l(W,Zi)] ≤
λ1σ

2

2(1− α2)

+
1− α2

λ1

(
DKL(PZ ||Rα1

Z ) + I(W ;Zi)

)
. (20)

Adding (19) and (20) optimizing over λ1 > 0 gives the
required bound on EPWP ′Zi [l(W,Zi)]− EPZiPW |Zi [l(W,Zi)].
Similarly, we can bound the difference EPWP ′Zi [l(W,Zi)] −
EP ′ZiPW |Zi [l(W,Zi)] in (18) by fixing λ = λ1 > 0 in (21)
and λ = −λ1 in (23). Applying Jensen’s inequality on both
bounds, adding the resultant inequalities and optimizing over
λ1 > 0 gives the corresponding bound.

Lemma A.1: Under Assumption 3.1, the following inequal-
ities hold for all λ ∈ R when i = 1, . . . , βM ,

EPWP ′Zi

[
exp
(
λ(l(W,Zi)− EPWRα1

Z
[l(W,Z)])− λ2σ2

2

− log
P ′Zi(Zi)

Rα1

Zi
(Zi)

)]
≤ 1, (21)

EPZiPW |Zi

[
exp
(
λ(l(W,Zi)− EPWRα1

Z
[l(W,Z)])− λ2σ2

2

− log
PZi(Zi)

Rα1

Zi
(Zi)

− ı(W,Zi)
)]
≤ 1, (22)

where ı(W,Zi) = log(PW,Zi(W,Zi)/(PWPZi(W,Zi)) is the
information density between random variables W and Zi. For
i = βM + 1, . . . ,M , the inequality (21) holds along with the
following inequality

EP ′ZiPW |Zi

[
exp
(
λ(l(W,Zi)− EPWRα1

Z
[l(W,Z)])− λ2σ2

2

− log
P ′Zi(Zi)

Rα1

Zi
(Zi)

− ı(W,Zi)
)]
≤ 1. (23)
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