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Abstract—Deep orthogonal nonnegative matrix factorization
(deep ONMF) is a constrained deep low-rank matrix approxim-
ation model which decomposes a data matrix through several
layers of factorizations. Deep ONMF imposes that each data
point is assigned to a single cluster at each layer. In this paper,
we first explain why deep ONMF can be interpreted as a bottom-
up hiearchical clustering technique. Then our main contribution
is to provide a simple yet effective greedy initialization strategy
for deep ONMF. We show on synthetic data sets that it performs
competitively with other initialization strategies, and apply it on
the decomposition of a hyperspectral image into its constitutive
materials.

I. INTRODUCTION

Given a matrix X ∈ Rm×n where each column is a data
point lying in an m-dimensional space, a low-rank matrix
approximation seeks for matrices W ∈ Rm×r and H ∈ Rr×n

such that each data point X(:, j) can be approximated as
X(:, j) ≈

∑r
k=1W (:, k)H(k, j) for j = 1, . . . , n. This means

that each data point is a linear combination of r basis vectors,
where r is called the rank of the approximation. In matrix
form, this approximation, also called a factorization, is written
as X ≈ WH , where each column of W corresponds to a
basis vector and each column of H indicates the proportions
in which each basis vector appears in each data point. The
quality of the approximation is generally measured by the least
squares criterion, that is, ‖X −WH‖2F .

To ensure the interpretability and uniqueness of such mod-
els, constraints are typically imposed on the factors W and
H , such as sparsity [1] and nonnegativity [2], leading to
sparse component analysis and nonnegative matrix factoriz-
ation (NMF), respectively. Adding orthogonality on top of
nonnegativity for the factor H , we obtain orthogonal NMF
(ONMF) [3] which can be formulated as follows

min
W∈Rm×r

+ ,H∈Rr×n
+

‖X −WH‖2F such thatHHT = Ir, (1)

where Ir is the identity matrix of size r.
Recently, matrix factorizations (MFs) have been extended

to the case where the input matrix is decomposed in more
than two factors. More precisely, L layers of successive
factorizations of ranks dl (l = 1, ..., L) are performed on X
as follows: X ≈ W1H1,W1 ≈ W2H2, . . . ,WL−1 ≈ WLHL,
where Wl ∈ Rm×dl and Hl ∈ R+

dl×dl−1 (l = 1, . . . , L)
with d0 = n, so that the matrix X is approximated as
X ≈ WLHLHL−1 · · ·H1. This model is referred to as
multilayer MF [4] or deep MF [5], depending on the way

the optimization is performed. Multilayer MF performs the
decomposition in a purely sequential way, that is, it suc-
cessively minimizes ‖Wi−1 − WiHi‖2F for i = 1, 2, . . . , L
where W0 = X . Deep MF considers a further backpropaga-
tion step. This consists in minimizing the loss function
‖X − WLHL · · ·H1‖2F across the layers: after a sequential
decomposition as in multilayer MF, the factors are iteratively
updated in a block-coordinate descent fashion, see [6] and
the references therein for more details. As for shallow MFs,
additional constraints must be imposed on the factors to render
it meaningful. Imposing nonnegativity and orthogonality on
the Hl’s leads to deep ONMF [7], the topic of this paper.

Organization of the paper: In Section II, we start by
explaining why deep ONMF is a particular hierarchical clus-
tering (HC) model. We then provide a greedy initialization
for deep ONMF in Section III. In Section IV-A, we compare
several initialization techniques on synthetic data, and in
Section IV-B we illustrate the ability of deep ONMF combined
with our greedy initialization to cluster the pixels of a hyper-
spectral image in a hierarchical way. Finally, in Section V, we
briefly conclude and give perspectives of research.

II. DEEP ONMF IS EQUIVALENT TO HC
It is well-known that standard NMF can be interpreted as

a soft clustering technique. In particular, when the sum of
the entries in each column of H is constrained to be equal
to 1, H(k, j) is the proportion in which the data point X(:, j)
is associated to the k-th basis vector W (:, k). Due to the
row-wise orthogonality constraint, ONMF is more restrictive:
nonnegativity together with orthogonality implies that each
column of H has at most a single non-zero entry. This
follows from the fact that two nonnegative and orthogonal
vectors must have disjoint supports. Hence ONMF associates
each data point to a single basis vector and performs a
hard clustering [3]. In fact, it can be proved that ONMF is
equivalent to a weighted variant of spherical k-means [8].
Recall that spherical k-means minimizes the angles between
the data points and their associated centroid, as opposed to
k-means that minimizes their Euclidean distances.

Deep ONMF is the extension of ONMF (1) to several layers:
for l = 1, 2, . . . , L,

Wl−1 ≈WlHl such that (Wl, Hl) ≥ 0 and HlH
T
l = Idl

,
(2)

where W0 = X . In deep ONMF, the ranks dl’s need to
decrease as the factorization unfolds, that is, dl > dl+1 for
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all l, otherwise we end up with trivial factorizations. In fact,
if dl ≤ dl+1 for some l, Wl = Wl+1Hl+1 = (Wl 0)

(Idl
0

)
where 0 is the matrix of zeros of appropriate dimension.
Under this assumption, deep ONMF can be interpreted as a
hierarchical clustering (HC) model, as it successively merges
the data points by aggregating clusters, which is referred to
as bottom-up HC or agglomerative clustering [9]. This first
layer splits the columns of X into d1 clusters, the second
layer splits the centroids W1 into d2 clusters, and so on. In
particular, it is interesting to observe that when the ranks are
such that dl = dl−1 − 1 for all l, each layer merges two
clusters of the previous layer into a single new cluster while
keeping the others unchanged. Hence, deep ONMF is a HC
technique where the criterion of the clustering is a weighted
spherical k-means. It is closely related to deep k-means [10]
which enforces each column of Hl to have a single nonzero
entry equal to one, for all l (in ONMF, there is a scaling degree
of freedom to approximate a data point with a centroid).

Note that other HC techniques are based on NMF ideas.
This is for example the case in [11], [12], [13] where rank-
2 NMF’s are applied sequentially to split clusters in two. In
contrast to deep ONMF, these techniques are top-down which
means that they start by assigning all the data points to a single
cluster and progressively split them in several clusters, hence
leading to a different interpretation than deep ONMF.

III. GREEDY INITIALIZATION OF DEEP ONMF

Usually, deep ONMF is applied using dl � dl−1 at each
layer and, in particular, d1 � n. However, we show in this
section that it is possible to obtain a closed-form optimal
solution of deep ONMF at the first layer when d1 = n− 1 or,
equivalently, for ONMF with r = n − 1; see Section III-A.
Using this idea sequentially, we propose a greedy initializa-
tion for deep ONMF; see Section III-B. As most clustering
strategies, deep ONMF relies on iterative methods and is very
sensitive to initialization. This is the main motivation behind
this work.

A. Solving ONMF for r = n− 1

Let us consider a data matrix X ∈ Rm×n and let us consider
ONMF (1) with r = n − 1. Because ONMF needs to assign
n data points to n − 1 clusters, only two data points need to
be merged within the same cluster, say the ith and the jth.
Assuming we know i and j, minimizing the reconstruction
error requires finding the scalars hi and hj and the new
centroid w ∈ Rm such that

e(i, j) = ‖X(:, i)− hiw‖2F + ‖X(:, j)− hjw‖2F (3)

is minimized, with h2i + h2j = 1 and (hi, hj) ≥ 0. Using
the first-order optimality conditions, it is easy to show that,
at optimality, w = hiX(:, i) + hjX(:, j) and hk = X(:,k)Tw

‖w‖22
for k = i, j. Combining both equalities and h2i + h2j = 1, and
writing everything in terms of α := hi, we obtain

α√
1− α2

=
α‖X(:, i)‖2 +

√
1− α2X(:, i)TX(:, j)

αX(:, i)TX(:, j) +
√
1− α2‖X(:, j)‖2

.

Assume w.l.o.g. that ‖X(:, i)‖2 ≥ ‖X(:, j)‖2. In the case

‖X(:, i)‖2 = ‖X(:, j)‖2, α = 1/
√
2, otherwise α =

√
L+
√
L

2L

where L = 4K2 + 1 and K = X(:,i)TX(:,j)
‖X(:,i)‖2 −‖X(:,j)‖2 (note that,

as ‖X(:, i)‖2 → ‖X(:, j)‖2, L→∞ and α→ 1/
√
2). Finally,

the optimal solution of ONMF with r = n − 1 will merge
the data points X(:, i) and X(:, j) for which e(i, j) takes
the smallest value. After permutation, let us assume w.l.o.g.
that i = n − 1 and j = n, the optimal ONMF has the form

X ≈
(
X(:, 1 : n − 2) w

)(
In−2 0 0
0 hi hj

)
, with error

e(i, j) given in (3).
We will denote by ONMF(n − 1) the exact procedure for

ONMF for r = n− 1. The two points leading to the smallest
e(i, j) (see Eq. 3) are merged according to Algorithm 1.
Note that, given (i, j), computing α and w requires O(m)
operations. Hence ONMF(n−1) requires O(mn2) operations
to test all pairs (i, j) and pick the one that leads to the lowest
error.

Algorithm 1 Exact orthogonal approximation of two points

Input: Two data points xi, xj ∈ Rm.
Output: Basis vector w ∈ Rm, coefficient α, error e(i, j)

1: perm= 0;
2: if ‖xi‖ < ‖xj‖ then
3: (xi, xj)← (xj , xi); perm = 1;
4: end if
5: if ‖xi‖ = ‖xj‖ then
6: α = 1/

√
2

7: else
8: K =

xT
i xj

‖xi‖2 −‖xj‖2 , L = 4K2 + 1, α =

√
L+
√
L

2L

9: end if
10: w = αxi +

√
1− α2xj

11: e(i, j) = ‖xi − αw‖2 + ‖xj −
√
1− α2w‖2

12: if perm = 1 then
13: α←

√
1− α2.

14: end if

B. Application to deep ONMF

Based on ONMF(n − 1), we propose a simple greedy ini-
tialization of deep ONMF, which we refer to as the successive
orthogonal decomposition algorithm (SODA).

Starting from the trivial decomposition X = W1H1, with
W1 = X and H1 = In, the two data points W1(:, i) and
W1(:, j) with smallest value for e(i, j) are merged at layer 2
according to the closed-form solution described in the previous
section. At each layer, two basis vectors are merged in a new
one using the method described in Section III-A. When the
current number of basis vectors is equal to the value of some
inner rank dl, they are used to initialize the corresponding Wl.

Let us analyze the computational cost of SODA. First, the
reconstruction errors e(i, j) of any two data points i and j

are computed, which requires n(n−1)
2 times O(m) operations.

SODA will have n − dL + 1 steps to be able to construct
WL, each of them requires to compute the reconstruction error
between the remaining basis vectors of the previous layer and
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the new one, which requires O(nm) operations. Moreover,
assuming an efficient sorting strategy of the array of errors
e(i, j)’s, finding the couple of indices which generates the
smallest e(i, j) is O(n2 log(n2)). Hence, SODA requires in
total Õ(n2m) operations (where ˜ indicates that we removed
logarithmic terms), which is not practical for large data sets.
Usually, deep ONMF algorithms run in O(mnd1) operations
where d1 � n.

However, for large data sets, such as hyperspectral images
where n is the number of pixels (which can be of the order of
millions), this greedy idea can be used as well. For example,
we first compute an ONMF of rank larger than (or equal to) d1,
say d′1 ≥ d1 with any standard algorithm faster than SODA,
and then "unfold" the remaining d′1 clusters through SODA.
This requires O(mnd′1) operations for the first layer ONMF,
and then Õ(d′21 m) operations for the next ones computed
by SODA. In practice, we recommend to use d′1 as a small
multiple of d1.

IV. NUMERICAL EXPERIMENTS

In this section, we evaluate the performance of several
initialization techniques for deep ONMF on synthetic data in
Section IV-A, and show the hierarchical clustering produced
by deep ONMF for a hyperspectral image in Section IV-B.

A. Synthetic data sets

Let us compare the effectiveness of the following initializ-
ation methods for the Wl’s in deep ONMF:
• Random initialization (RAND): any Wl, l = 1, ..., L is

set up by randomly picking dl < dl−1 columns of Wl−1,
with W0 = X . This is the most standard approach in the
literature.

• Successive nonnegative projection algorithm (SNPA) [6]:
Wl is obtained with SNPA [14] applied on Wl−1.

• Our proposed greedy algorithm, SODA.
• RAND+SODA: Similarly to as described at the end of

Section III-B, we randomly choose d′1 � n points, and
then apply SODA on this subset of points.

We compare these initializations when combined with the
alternating optimization strategy that optimizes Wl’s and Hl’s
alternatively by extending the multiplicative updates proposed
for ONMF by [15] to deep ONMF.

We generate the synthetic data sets as follows, in m = 3
dimensions. We take d1 = 16 and d2 = 4 and generate the
ground-truth (GT) basis vectors W1 and W2 whose columns
have unit `1 norms in such a way that the 16 first layer basis
vectors are clustered in 4 groups around 4 second layer basis
vectors; see Fig. 1 for an illustration. As shown on Fig. 1,
the columns of W2 are the central basis vectors of 4 columns
of W1: more precisely, it is equal to their average, up to a
scaling factor. We then pick n = 1000 points uniformly at
random over the GT clusters, that is, each data point is equal
to one of the columns of W1, up to scaling factor and fix d′1
to 100. Finally, noise is added to the data such that

X = max

(
0, X̃ + ε||X̃||F

N

||N ||F

)
,

Fig. 1: Geometric illustration of the synthetic data sets.

where X̃ = W1H1, each entry of N follows a Gaussian
distribution of mean 0 and standard deviation 1, and ε is the
noise level. To assess the quality of the different initializations,
10 data sets are generated for each noise level and we report
the mean and standard deviation of the clustering accuracy
(ACC) at both layers for several noise levels. Given K
estimated clusters Gk’s and K ground truth clusters Hk’s, the
ACC is defined as

ACC(G,H) =
1

n
max

P∈[1···K]

K∑
k=1

|Gk ∩HP (k)| (4)

where P is any permutation of {1, 2, . . . ,K}.
The results are presented in terms of both reconstruction

error and accuracy at Table I. More precisely, it reports the
relative reconstruction error ‖X−W2H2H1‖F

‖X‖F , denoted rel_err,
and the accuracy at the first and the second layers, denoted
ACC 1 and ACC 2, respectively.

Clearly, SODA outperforms RAND and SNPA in terms
of clustering accuracy. When the noise is small, it always
manages to reach a perfect clustering at both layers, contrary
to the two other methods. Of course, this is at the expense
of a larger computational cost, from O(mnr) for RAND
and SNPA, to O(mn2) for SODA. However, RAND+SODA
performs almost as well as SODA at a reduced cost (see the
end of Section III-B), showing that using the greedy procedure
further in the decomposition is also worthwhile. Note that the
accuracy of all algorithms is always a bit higher for the second
layer since there are fewer clusters, which are better separated.
The reason SNPA underperforms is because some clusters are
contained in the convex cone of the others, while SNPA is
designed to identify extreme rays of the cone generated by
the columns of X .

1468



Table I: Comparison of the clustering accuracies at layer 1 (ACC 1) and 2 (ACC 2) and final relative error (rel_err) of deep
MF applied on synthetic data with several initialization strategies, as a function of the noise level. The average and standard
deviation (if above 0.01) over 10 data sets are reported. The best method in terms of accuracy is highlighted in bold for each
configuration.

RAND SNPA SODA RAND+SODA
ε ACC 1 ACC 2 rel_err (%) ACC 1 ACC 2 rel_err (%) ACC 1 ACC 2 rel_err (%) ACC 1 ACC 2 rel_err

10−4 0.54± 0.14 0.74± 0.21 9.26± 6.23 0.21± 0.03 0.69± 0.17 14.84± 3.91 1 1 7.49 1 1 7.50
10−3 0.49± 0.17 0.66± 0.19 9.41± 6.19 0.18± 0.02 0.67± 0.14 15.49± 4.24 1 1 7.49 1 1 7.50
10−2 0.48± 0.17 0.76± 0.16 10.31± 6.51 0.42± 0.09 0.72± 0.16 10.82± 4.21 0.97 0.99 7.51 0.97 0.99 7.52
10−1 0.40± 0.07 0.70± 0.17 15.46± 4.57 0.38± 0.07 0.68± 0.09 14.27± 3.20 0.69± 0.01 0.92± 0.01 9.75 0.57± 0.07 0.92± 0.01 10.00± 0.67

Interestingly, the value of the relative reconstruction errors
obtained by the different algorithms are close to one another
(for example, for ε = 10−2, the average is 10.30% for
RAND, 10.82% for SNPA, 7.51% for SODA, and 7.52%
for RAND+SODA), although SODA-based algorithms have
a significantly higher clustering accuracy (for example, for
ε = 10−2 at the first layer, the average accuracy is
48% for RAND, 42% for SNPA, and 97% for SODA and
RAND+SODA). This illustrates the fact that on challenging
settings such as the one of Fig. 1 for which the maximum
distance between two points belonging to the same cluster
might be larger than the inter-cluster distance, different ways
of splitting the data lead to comparable reconstruction errors
but rather different clustering accuracies. In other words,
ONMF has many local minima with similar objective function
values, so it is important to use proper initialization and
algorithms to identify good solutions. In fact, SODA extracts
initial basis vectors located at the center of each cluster, which
is not guaranteed by the other approaches. Hence SODA
should be preferred as an initialization technique as it performs
significantly better in terms of accuracy.

B. Hyperspectral unmixing

A hyperspectral image (HI) contains the reflectance values
of n pixels in m wavelength spectral bands and is generally
represented by a matrix X ∈ Rm×n where each column of X
is the so-called spectral signature of each pixel. Hyperspectral
unmixing (HU) consists in identifying the spectral signatures
of r materials and under the linear mixing assumption, NMF is
appropriate to solve HU [16]. Similarly, when deep ONMF is
applied, the materials (also called endmembers) are extracted
in a hierarchical bottom-up fashion.

The HYDICE Urban HI is made of n = 307 × 307 pixels
with m = 162 spectral bands; see Fig. 2. There are several
versions of the ground truth depending on the number of
materials considered [17].

The abundance maps, that is, the proportions in which every
material appears in every pixel, extracted by deep ONMF, with
L = 6, dl = 8 − l for all l are represented on Fig. 3. To
initialize the factors of each layer, we first apply ONMF with
d1 = 7 with SNPA initialization, and then apply SODA on W1,
while [6] used a multilayer ONMF with SNPA initialization
of all layers. For conciseness, we gathered the representations
of layer 3 and 4 as well as those of layer 5 and 6 in a single
level as distinct clusters were merged at these layers. The first
layer extracts two types of grass, trees, road, dirt, metal and
roof. At layer 2, road and metal, which have similar spectral

Fig. 2: Urban hyperspectral image.

signatures, are merged in a single cluster. Then, the road/metal
and dirt are merged to create a single cluster while the two
kinds of grass are also merged. Finally, the road and roof are
merged, while trees and grass are also gathered in a cluster
made of vegetation.

Deep MF provides a richer decomposition than single-layer
matrix factorization and the hybrid initialization combining
SNPA with SODA is efficient to set up the factors.

V. CONCLUSION

In this paper, we explained why deep ONMF is equivalent
to a particular bottom-up hierarchical clustering. We then
proposed a greedy initialisation for deep ONMF, SODA, which
was shown to outperform random initialization and SNPA on
synthetic data sets, especially in situations with noise or when
the clusters are quite close to each other. We emphasized the
fact that similar (small) final reconstruction errors can be as-
sociated to various clustering accuracies hence a proper choice
of the initialization technique is critical. We also showed
that deep ONMF initialized with SODA-based algorithms are
able to produce meaningful hierarchical decompositions in a
hyperspectral image.

Future directions of research include to validate the pro-
posed method on more data sets and other applications, such
as topic modeling. Also, a thorough study of the robustness
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Fig. 3: Deep ONMF applied on the Urban HI.

to noise of SODA would be interesting. In fact, as long as
the noise is sufficiently small, SODA provides an optimal
clustering. This is obvious in the noiseless case, where all
data points in the same cluster are multiples of one another,
and should be quantified in noisy situations.
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