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Abstract—It is well known that modern neural networks are poorly
calibrated. They tend to overestimate or underestimate probabilities when
compared to the expected accuracy. This results in misleading reliability
and corrupting our decision policy. We show that the amount of calibra-
tion error differs across the classes. As a result, we propose to calibrate
each class separately. We apply this class-level calibration paradigm to
the concept of temperature scaling and describe an optimization method
that finds the suitable temperature scaling for each class. We report
extensive experiments on a variety of image datasets, and a wide variety
of network architectures, and show that our approach achieves state-of-
the-art calibration without compromising on accuracy in almost all cases.

Index Terms—neural networks, network calibration, temperature scal-
ing, Expected Calibration Error (ECE)

I. INTRODUCTION

Probabilistic machine learning algorithms output confidence scores
along with their predictions. Ideally, these scores should match
the true correctness probability. However, modern deep learning
models still fall short in giving useful estimates of their predictive
uncertainty. The lack of connection between the model’s predicted
probabilities and the confidence of model’s predictions constitutes a
real obstacle to the application of neural network models to real-world
problems, such as decision-making systems. Quantifying uncertainty
is especially critical in real-world tasks such as automatic medical
diagnosis [1], [2], [3] and perception tasks in autonomous driving
[4]. A classifier is said to be calibrated if the probability values
it associates with the class labels match the true probabilities of
correct class assignments. Modern neural networks have been shown
to be more overconfident in their predictions than their predecessors
even though their generalization accuracy is higher, partly due to the
fact that they can overfit on the negative log-likelihood loss without
overfitting on the classification error [5], [6], [7].

Various confidence calibration methods have recently been pro-
posed in the field of deep learning to overcome the over-confidence
issue. Calibration strategies can be divided into two main types.
The first is a model calibration while training the model (e.g. [8]
[9] [10] [11] [12]). The second approach performs calibration as a
post processing step using an already trained model. Post-hoc scaling
approaches for calibration (e.g. Platt scaling [13], isotonic regression
[14], and temperature scaling [5]) are widely used. Their goal is to
use hold-out validation data to learn a calibration map that transforms
the model’s predictions to be better calibrated. Temperature scaling
is the simplest and most effective calibration method [5] and is
the current standard practical calibration method. Guo et al. [5]
investigated several scaling models, ranging from single-parameter
based temperature scaling to more complicated vector/matrix scaling.
They reported poor performance for vector/matrix scaling calibration.
To avoid overfitting, Kull et al. [15] suggested regularizing matrix
scaling with a L2 loss on the calibration model weights.

In this study we propose an extension of temperature scaling that
assigns a separate scaling parameter to each class. We use a greedy
grid search optimization procedure to directly optimize the Expected
Calibration Error (ECE) measure [16], instead of optimizing the
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negative-log-likelihood score as was done in [5] and [15]. Using this
optimization we can guarantee that the calibration does not lead to
any performance degradation.

We show that, unlike matrix scaling [15], we can easily find the
optimal calibration parameters. The proposed calibration procedure
is very fast and robust. No hyper parameters need to be tuned. The
learned calibration method is easy to implement and yields improved
calibration results compared to temperature scaling. The proposed
approach to calibration does not change the model parameters, which
allows it to be applied on any trained network and guarantees to retain
the original classification accuracy.

We evaluated our method against existing calibration approaches
on various image datasets. Our recalibration approach outperforms
existing methods on improving the ECE calibration measures.

II. PROBLEM FORMULATION

Let x be an input vector to a classification network with k classes.
The output of the network is a vector of k values z1, ..., zx. Each
of these values, which are also called logits, represents the score for
one of the k possible classes. The logits’ vector is transformed into
a probabilities vector by a softmax layer: p(y = i|z) = %.
Although these values uphold the mathematical terms of pro‘t)Jabilities,
they do not represent any actual probabilities of the classes.

The predicted class for a sample x is calculated from the probabili-
ties vector by § = arg max; p(y = i|x) and the predicted confidence
for this sample is defined by p = p(y = g|z). The accuracy of
the model is defined by the probability that the predicted class p is
correct. The network is said to be calibrated if for each sample the
confidence is equal to the accuracy. For example, if we collect ten
samples, each having an identical confidence score of 0.8, we then
expect an 80% classification accuracy for the ten samples. Calibration
can also be defined for each of the k classes separately. Class i is
said to be calibrated in the network if the confidence of a sample
from this class is equal to the accuracy of the class.

A popular metric used to measure model calibration is the expected
calibration error (ECE) [16], which is defined as the expected
absolute difference between the model’s confidence and its accuracy.
Since we only have finite samples, the ECE cannot in practice
be computed using this definition. Instead, we divide the interval
[0,1] into M equispaced bins, where the i*® bin is the interval
(1;71, ﬁ] Let B; denote the set of samples with confidences p
belonging to the i*" bin. The accuracy A; of this bin is computed
as A; = ﬁ Do B, 1 (g+ = y¢), where 1 is the indicator function,
and §j; and y, are the predicted and ground-truth labels for the t*®
sample. Similarly, the confidence C; of the i*" bin is computed as
C; = \Bilil Zte B; Pt, i.e. C; is the average confidence of all samples
in the bin. The ECE can be approximated as a weighted average of
the absolute difference between the accuracy and confidence of each
bin: .
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where n is the number of samples in a validation set. Note that
A; > C; means the network is under-confident at the i*" bin and
C; > A; implies that the network is over-confident. We note in
passing that even though the drawbacks of ECE have been pointed
out and some improvements have been proposed [8], [17], [18], the
ECE histogram approximation is still used as the standard calibration
measure.

The ECE method can also be used to determine the calibration of
the prediction for each class separately [15], [19], [8]. We can apply
the same procedure described above to compute the ECE score for
class j by considering for each sample x the probability p(y = j|x).
Let B;; denote the set of samples z that p(y = j|z) is in the 5*" bin,
A;; the accuracy of this class in this bin A;; = ﬁ ZteBij Ly,=i}
and Cj; ﬁ Yiep,, Pyr = jlwt) is the confidence. The
classwise-ECE score for class j can be then calculated as:

M
Bi;
ECE; = § —'n_” [Aij — Cij] - 2
i=1 7

Fig. la shows the class-level ECE score vs. accuracy of the 100
classes in the CIFAR-100 dataset trained with ResNet110[20]. It can
be seen that the ECE of a class depends on its accuracy - the higher
the accuracy, the lower the ECE. To better understand the behavior
of class level confidence we can break the class-level ECE score (2)
into two parts. We can first sum over the bins where the network is
under-confident:

o~ | Byl
ECE}™*" = Z T” max(0, Ai; — Cij) 3)
=1 J
and then sum over the bins where the network in over-confident:

M
ECE;"" = Z I?lizjl max (0, Ci; — Aij). @

1=1

It can be easily verified that for each class j:
ECE; = ECE}"" + ECE}"*". Q)

Fig. 1b and 1c show the ECE vs. accuracy for under-confidence bins
(3) and for over confidence bins (4) respectively. Fig. 1d shows under
and over confidence at each bin summarized over all the classes. We
can see that under-confidence situations occur mainly at the lowest
bin where the probability of the most likely class is very low. This is
why under-confidence is more frequent in classes with low accuracy
results. Hence, although the main problem is over-confidence, in
classes that are poorly classified there are also problems of under-
confidence in smaller bins. Overall we can see from Fig. 1a that the
calibration problem is different across the different classes. Therefore,
it make sense to calibrate each class separately.

III. CLASS BASED TEMPERATURE SCALING

Temperature Scaling (TS), is a simple yet very effective technique
for calibrating prediction probabilities [5]. It uses a single scalar
parameter 7" > 0, where 7' is the temperature, to rescale logit
scores before applying the softmax function to compute the class
distribution. Since the same 7' is used for all classes, the softmax
output with scaling has a monotonic relationship with unscaled
output. In overconfident models where 7" > 1, the recalibrated
probabilities have a lower value than the original probabilities, and
they are more evenly distributed between 0 and 1. To get an optimal
temperature 7' for a trained model we can minimize the negative
log likelihood for a held-out validation dataset. The temperature T’
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Fig. 1: (a) Classwise ECE vs. accuracy for the 100 classes of CIFAR-
100 trained with ResNet110, (b) ECE computed on under-confidence
bins, (c) ECE computed on over-confidence bins, (d) under- and over-
confidence ECE summarized over the classes at each bin.

usually scales between 1.5 and 3, which indicates that the network
learning algorithm produced an overconfident model.

As we demonstrated above, there may be different calibration
errors in different classes. Because it only has a single tuneable
parameter, TS cannot learn to act differently on different classes.
Thus, we propose to assign a separate temperature to each class.
Denote the scaling of class ¢ by 7;. The temperature scaling is
performed as follows:

—ilz) = _exp(z/Ty)
P =) = S /T

s.t. 21, ..., 2 are the logit values (the input to the softmax function)
obtained by applying the network to input vector x. In the case where
we use the same temperature for all classes the model is reduced
to standard TS [5]. To find the optimal set of temperature scales
we can apply gradient based methods to minimize the negative log
likelihood for a held-out validation dataset. In the case of a single
temperature parameter, direct minimization of the ECE measure (1)
on the validation set was shown to yield better calibration results [12].
This is not surprising since we directly optimize the same calibration
measure on the validation set that is finally evaluated on the test
set. ECE is not differentiable so that the optimal temperature can
be found by a grid search over values between O and 10, with a
step of 0.1, and finding the one that minimizes the validation set
ECE. In our case of assigning a different parameter to each class,
the grid size is an exponential function of the number of classes;
hence a grid search is no longer feasible. Instead, we suggest a
greedy grid search strategy to find a local optimum of the ECE score.
Let ECE(T1, T3, ..., Tk) be the validation set ECE score (1) of the
system that is calibrated according to Eq. (6). For each class ¢, while
freezing all other temperature values, the algorithm uses a grid search
to find the temperature value 7T; for that class that minimizes the ECE

i=1,....k (©6)
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measure.
T: = arg I’Il’slIII'EC]':‘(Tvl7 ceey Ti—17 S, Ti+1, ceny Tk) (7)

The algorithm goes over all the classes in a circular manner. The
ECE score is monotonically improved until it converges to a local
minimum point. We dub our algorithm “Class based Temperature
Scaling (CTS)”.

TS has the desirable property that it does not affect its hard-
decision accuracy. Since the parameter 7' does not change the identity
of the class that maximizes the softmax function, the class prediction
remains unchanged. The proposed CTS algorithm can, in principle,
change the model’s accuracy. In the next section we empirically show
that there is indeed a trade-off between calibration and accuracy.
Improving the calibration can cause degradation of the classification
accuracy. Since for each class ¢ we perform an exhaustive grid search
over the best temperature 7;, we can look for 7; that yields the
best ECE result while not decreasing the performance compared to
the current value of T;. Let Acc(T1, T2, ..., Tk) be the classification
accuracy computed on the validation set. To ensure that there is no
performance degradation in the calibration process, the minimization
in (7) is performed only on grid values S such that:

Ace(Ty, ..., S, ..., Ti) > Acc(Th, ..., Tiy ..., Tk)

where T} is the 7" parameter’s current value.

Algorithm 1 Class based Temperature Scaling (CTS)

Goal: Find T4, ..., T} € (0, 00) that minimize the ECE calibration
score ECE(T1, ..., Tk) on a validation set.
Initialization: Compute temperature scaling 7" and set
T,=T i=1,..,k
while still not converging do
fori=1,....,k do

T, « arg msinECE(Tl, vy Tiz1, Sy ooy The)

s.t. the minimization is done over all grid values S
that increase the validation set accuracy.
end for
end while

In order to find the optimal temperature for each class, we first
computed the single temperature that minimized the ECE score.
Next, we use it to initialize all the class based temperatures. We
found this initializing method to work well for the class-based
temperature scaling process. The algorithm usually converges fast
and five iterations were enough for all the experiments. The CTS
algorithm is summarized in Algorithm box 1.

Matrix and vector scaling are variants of TS. Matrix scaling
applies a linear transformation Wz; + b to the logits before the
softmax operation. The number of parameters for matrix scaling
grows quadratically with the number of classes k. Vector scaling
is a variant where W is restricted to be a diagonal matrix. If
W is further restricted to be a scalar matrix, we obtain the TS
method. Gau at al. [5] reported poor performance for matrix scaling
optimized by minimizing cross entropy on validation set, leading the
authors to conclude that a calibration model with many parameters
would overfit to a small validation set. Note that applying matrix
scaling to a task with 100 classes requires 10100 scaling parameters.
They also reported that vector scaling recovers essentially the same
solution as temperature scaling. This is because the learned vector
has nearly constant entries, and therefore is no different from a scalar
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Fig. 2: Reliability plots, before calibration (a) after TS calibration (b)
and after CTS calibration (c).

transformation. Note that, unlike our approach, they optimized the
cross entropy score. Nixon et al. [17] also reported inferior calibration
results for vector scaling compared to TS.

Kull et al. [15] addressed this over-fitting problem by adding the
following off-diagonal L, regularization term to the cross entropy
score: ) .

R(w,b):)\«me?jJﬂr%b? ®)

i#]

where A\ and p are hyper-parameters that need to be tuned with the
internal cross-validation on the validation data. This approach has
several drawbacks. First, having many parameters and adding hyper
parameters to the loss makes the calibration procedure difficult to
carry out and unstable. Second, and more importantly, due to the
large number of parameters and the existence of hyper parameters
in the matrix scaling we cannot apply greedy search optimization
to minimize the ECE calibration score. In contrast, the proposed
CTS method is more general than TS but calibration by minimizing
the ECE score is still feasible and there are still guarantees that the
performance will not decrease while minimizing the ECE score.

IV. EXPERIMENTAL RESULTS

We conducted image classification experiments to test the per-
formance of the CTS algorithm. We used the following image
classification datasets in our experiments:

1) CIFAR-10 [20]: This dataset has 60,000 color images of
size 32 x 32, divided equally into 10 classes. We use a
train/validation/test split of 45,000/5,000/10,000 images.

2) CIFAR-100 [20]: This dataset has 60,000 color images of size
32 x 32, divided equally into 100 classes. We again use a
train/validation/test split of 45,000/5,000/10,000 images.

3) Tiny-ImageNet [21]: Tiny-ImageNet is a subset of ImageNet
with 64 x 64 dimensional images, 200 classes and 500 images
per class in the training set and 50 images per class in the
validation set. The image dimensions of Tiny-ImageNet are
twice those of CIFAR-10/100 images.
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Dataset Model Cross-Entropy Brier Loss MMCE LS-0.05
Pre T TS CTS PreT TS CTS PreT TS CTS PreT TS CTS
ResNet-50 1752 34221 272 6.52 3.64(1.1) 159 1532 2.38(1.8) 248 7.81 4.01(1.1) 237
CIFAR-100 ResNet-110 19.05 443(23) 174 7.88 4.65(12) 2.65 19.14 3.86(2.3) 233 11.02 5.89(1.1) 1.99
] Wide-ResNet-26-10 1533 2.88(2.2) 2.14 4.31 2.70(1.1) 179 13.17  4.37(1.9) 449 4.84 4.84(1.00  1.68
DenseNet-121 2098  427(23)  2.06 5.17 2.29(1.1) 198 19.13  3.06(2.1) 227 1289  7.52(12) 179
ResNet-50 435  1.3525) 099 1.82 1.08(1.1)  1.33 4.56 1.192.6)  0.83 2.96 1.67(0.9)  1.04
CIFAR-10 ResNet-110 441  1.092.8)  0.90 2.56 1.25(1.2)  0.67 5.08 1.42(2.8)  0.66 2.09 2.09(1.0)  0.68
Wide-ResNet-26-10 323 0.92(22) 0.80 1.25 1.25(1.0)  0.66 3.29 0.86(2.2) 0.34 4.26 1.84(0.8)  0.72
DenseNet-121 452  13124) 100 1.53 1.53(1.0)  1.05 5.10 1.61(25) 132 1.88 1.82(0.9) 149
Tiny-ImageNet ~ ResNet-50 1532 548(14) 4.20 4.44 4.13(0.9) 296 13.01 555(1.3) 417 1523  6.51(0.7) 473

TABLE I: ECE (in %) computed for different approaches for pre-temperature scaling, single temperature scaling (TS) and class-based

temperature scaling. (CTS).

Dataset Model Cross-Entropy Brier Loss MMCE LS-0.05

CTS U-CTS  Accdiff CTS U-CTS  Acc-diff CTS U-CTS  Acc-diff CTS U-CTS  Acc-diff

ResNet-50 2.72 2.50 4.6 1.59 1.99 24 2.48 2.92 6.2 2.37 1.86 0.1

CIFAR-100 ResNet-110 1.74 1.33 0.7 2.65 2.19 49 2.33 1.80 0.1 1.99 2.58 0.1

] Wide-ResNet-26-10  2.14 1.57 5.1 1.79 1.32 49 4.49 3.37 9.8 1.68 2.14 0.0

DenseNet-121 2.06 243 1.8 1.98 1.67 6.2 227 2.12 1.0 1.79 2.42 0.0

ResNet-50 0.99 0.95 0.1 1.33 1.06 0.3 0.83 0.88 0.0 1.04 1.04 0.0

CIFAR-10 ResNet-110 0.90 0.73 0.0 0.67 0.94 0.2 0.66 0.63 0.0 0.68 0.61 0.1

Wide-ResNet-26-10  0.80 0.76 0.0 0.66 0.81 0.3 0.34 0.47 0.0 0.72 0.72 0.0

DenseNet-121 1.00 1.09 0.0 1.05 1.07 0.4 1.32 1.07 0.0 1.49 0.77 0.0

Tiny-ImageNet ~ ResNet-50 4.20 1.47 6.1 2.96 1.74 32 4.17 1.74 52 4.73 1.47 10.3

TABLE II: ECE (in %) computed for different approaches for CTS with an accuracy constraint (CTS), and without an accuracy constraint
(U-CTS) and the drop in the accuracy (in %) when using U-CTS for each approach.

Dataset Model Uncalibrated TS Vector Scaling MS-ODIR  Dir-ODIR CTS
ImaceNet DenseNet-161 5.720 2.059 2.637 4.337 3.989 2.158
& ResNet-152 6.545 2.166 2.641 5.377 4.556 2.149
SVHN ResNet-152-SD 0.877 0.675 0.630 0.646 0.651 0.458

TABLE III: ECE (in %) using 25 bins (with the lowest in bold and the second lowest underlined).

We tested the results on several pre-trained deep neural networks.
We followed the experiment setup in [12] and used their trained
networks which are available online '.

Table T describes a comparison on ECE% (computed using 15
bins) obtained by evaluation on the test set. The results are before
calibration, with scaling by a single temperature (TS) and with our
class based temperature scaling (CTS). The optimal TS was achieved
by a greedy algorithm to minimize the ECE calibration score [12].
Along with the cross-entropy loss, we tested our results on three other

models which were trained on different loss functions:
1) Brier loss [22]: The squared error between the predicted

softmax vector and the one-hot ground truth encoding.
MMCE (Maximum Mean Calibration Error) [23]: A con-
tinuous and differentiable proxy for calibration error that is
normally used as a regulariser alongside cross-entropy.

Label smoothing (LS) [24]: Given a one-hot ground-truth
distribution q and a smoothing factor o (hyper-parameter), the
smoothed vector s is obtained as s; = (1 — a)q; + a(l —
q;)/(k—1), where s; and q; denote the i elements of s and
q respectively, and & is the number of classes. Instead of q, s
is treated as the ground truth. The reported results were btained
from LS-0.05 with a = 0.05, which was found to achieve the
best performance [12].

2)

3)

Uhttps://github.com/torrvision/focal_calibration

The comparative calibration results are presented in Table I. As can
be seen, the ECE score after CTS calibration was lower than the ECE
after TS in almost all cases. Fig. 3 presents the optimal temperature
of each class after class-based scaling vs. class accuracy for ResNet-
110 with a cross-entropy loss trained on CIFAR-100. The red line
marks the optimal single temperature that minimized the ECE score.

The CTS algorithm ensures no performance degradation by ap-
plying a constraint on the model’s accuracy at each iteration. We
compared the ECE results of CTS to the Unconstrained CTS (U-
CTS) that allows the accuracy to drop when optimizing the ECE
score. We also checked the difference in accuracy before and after
the Unconstrained CTS to see if and how much the performance
actually decreases. The results are shown in Table II.

Another way of visualizing calibration is to use a reliability plot
[25], which plots the accuracies of the confidence bins as a bar
chart. For a perfectly calibrated model, the accuracy for each bin
matches the confidence, hence all of the bars lie on the diagonal.
By contrast, if most of the bars lie above the diagonal, the model
is more accurate than it expects, and is under-confident, and if most
of the bars lie below the diagonal, then it is over-confident. Fig. 2
compares reliability plots over 15 bins on models trained on ResNet-
110 with cross-entropy loss and on CIFAR-100 for three cases. It
shows that the CTS method yielded the best calibrated system of
the three, especially for high probability bins. This is yet another
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indication that the network is better calibrated after CTS than after
TS. Note that some of the bins lie above the diagonal, which indicates
the under-confidence of the model.
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Fig. 3: Optimal scaling values vs. accuracy for the classes in CIFAR-
100 (trained with ResNet110).

In another set of experiments we followed the setup in [18]. We
evaluated our CTS method on the SVHN dataset [26] and ImageNet
[27]. Pre-trained network logits are available online 2. The proposed
CTS is compared to TS, vector scaling and to two variants of matrix
scaling (see details at [18]). As can be seen in Table III, CTS achieved
the best results in two cases and was on a par with TS in the third
case.

V. CONCLUSION

Temperature scaling is the simplest, fastest, and most straight-
forward calibration method. In spite of this, it is often the most
effective and widely used method. In this paper we proposed CTS
which is the simplest considerable extension of the TS method which
enables a different temperature scaling for each class. CTS has all the
advantages of TS, i.e., it is easy to train and implement. In addition,
it consistently produces better calibration results on a large variety of
tasks and network architectures without any performance degradation.
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