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Abstract—Convolutional neural networks (CNNs) are widely
used in many areas. The problem now is to collect large numbers
of labeled images in order to improve network performance. Data
augmentation is to increase the number of images for training,
where images are artificially generated by transformation, such as
rotation, translation, scaling, and flipping. In this paper, we focus
on flipping data augmentation and present a novel algorithm of
convolution that involves flipping data augmentation in CNNs.
Without generating flipped images beforehand, we can obtain
information of flipped images in computation on convolutional
layers using discrete cosine transforms. The proposed algorithm
on a simple CNN is demonstrated and the efficacy of the proposed
algorithm is testified.

Index Terms—convolutional neural network, discrete cosine
transform, linear convolution, data augmentation, flipping

I. INTRODUCTION

Convolutional neural networks (CNNs) are widely used in
many applications, such as image recognition, image classifi-
cation, and medical image analysis. AlexNet attracted attention
in deep learning [1]. Apart from the number of layers, the
architecture of AlexNet is basically the same as that of
LeNet [2], which consists of convolutional layers and pooling
layers followed by fully connected layers. The environment
surrounding deep learning has improved drastically. Now that
frameworks for deep learning are in place, it is more difficult to
collect a large numbers of training images to improve network
performance than to build a CNN.

The performance improves in proportion to the number of
learning samples. Data augmentation is a simple but partic-
ularly effective method to improve network performance by
increasing the number of samples. Generally, samples are
generated by applying simple geometric transformation, e.g.,
rotation, vertical/horizontal translation, scaling, and flipping to
training images. There are several data augmentation methods
for effectively improving network performance, such as a
method using diffuseomorphisms [3], a method using adver-
sarial networks [4], and a method using adaptive generation
[5].

In this paper, we focus on flipping in data augmentation,
which is effective in simple transformation. We present a novel
algorithm that calculates convolution for flipping data aug-
mentation in CNNs. The proposed algorithm obtains not only
the convolution of training images but also the convolution of
flipped images without generating flipped images beforehand.

Use of discrete cosine transforms (DCTs) with zero-padding
rather than spatial convolution enables image-free flipping data
augmentation. The proposed algorithm is derived by analyzing
the relation between linear convolution and circular convolu-
tion of DCTs through symmetrically extended sequences. We
demonstrate the proposed algorithm on a simple CNN with
limited MNIST dataset.

II. PRELIMINARIES

Firstly, we explain leaning of filter coefficients in CNNs
briefly. Then, we consider the relation between linear convolu-
tion and circular convolution of DCTs through symmetrically
extended sequences. One dimensional expression is used for
simplicity.

A. Learning of filter coefficients in convolution layers

In CNNs, the filter coefficients (weights of kernel), h, of a
convolutional layer are generally updated in iterations of the
forward and backward propagation [6] in the learning process
as

h← h− η
∂E

∂h
(1)

where E denotes the loss function and η is the learning rate.
Let x and y be the input feature map and output feature map

of a convolutional layer, respectively. In the forward pass, y
is computed as

y = x ∗ h (2)

where operator ‘∗’ represents the spatial convolution. In the
backward pass, the gradients of E with respect to x are
obtained by

∂E

∂x
=

∂E

∂y
∗ hT (3)

which is used for the gradients in the previous layer, and the
gradients of E with respect to h are computed by

∂E

∂h
=

∂E

∂y
∗ x. (4)

The spatial convolutions in (2), (3), and (4) can be replaced
by the fast discrete Fourier transforms (DFTs), i.e., FFTs for
fast training [7]. In this paper, we replace them with DCTs not
only for computational complexity but also for flipping data
augmentation.
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B. The relation between DFT and DCT Type 2 through
symmetrically extended sequences

Let xN (n) be a sequence of length N . The symmetrically
extended sequence (SES) of xN (n) is defined as

x̂2N (n) = x2N (n) + x2N (−n− 1) (5)

where

x2N (n) =

{
xN (n), 0 ≤ n ≤ N − 1
0, N ≤ n ≤ 2N − 1

. (6)

The 2N -point DFT coefficients, X̂(k), of x̂2N (n) are related
to the N -point DCT Type 2 (DCT-2) coefficients, XC(k), of
xN (n) [8], for k = 0, 1, . . . , N − 1 as

X̂(k) = (1/Ck)XC(k)W
−k/2
2N (7)

where W2N = exp(−j2π/2N) and

X̂(k) =

2N−1∑
n=0

x̂2N (n)Wnk
2N (8)

XC(k) = 2Ck

N−1∑
n=0

xN (n) cos

(
π(n+ 1/2)k

N

)
(9)

Ck =

{
1/
√
2, k = 0 or N

1, otherwise
. (10)

Since the DFT has circular periodicity, the relation clearly
indicates the symmetrical circular periodicity of DCT-2. This
property of DCT-2 is the key to flipping data augmentation.

C. Circular convolution of SESs

The circular convolution of period 2N of SESs, x̂2N (n) and
ĥ2N (n), is calculated using DFT as

ŷ2N (n) =
1

2N

2N−1∑
k=0

X̂(k)Ĥ(k)W−nk
2N (11)

where Ĥ(k) is the 2N -point DFT coefficients of ĥ2N (n).
From (7), ŷ2N (n) can be also obtained for n=0, 1, . . . , N−1
by

ŷ2N (n− 1) =
1

N

N∑
k=0

C2
kXC(k)HC(k) cos

(
πnk

N

)
(12)

where HC(k) is the N -point DCT-2 coefficient of hN (n) and
YC(N) = 0. Therefore, the first N samples of convolution
between SESs is obtained using DCTs without generating
SESs.

D. Four linear convolutions in circular convolution of SESs

Let x(n) and h(n) be a sequence of length M and a filter of
length L, respectively. We define xN (n) and hN (n) of length
N as

xN (n) =

{
x(n− z1), z1 ≤ n ≤ z1 +M − 1
0, otherwise (13)

hN (n) =

{
h(n− z2), z2 ≤ n ≤ z2 + L− 1
0, otherwise (14)

where z1 and z2 are the number of zeros to be padded before
x(n) and h(n), respectively.

The linear convolution, ŷ(n), between x̂2N (n) and ĥ2N (n)
can be expressed by the superposition of four linear convolu-
tions as

ŷ(n) = y(1)(n) + y(2)(n) + y(3)(n) + y(4)(n) (15)

where

y(1)(n) =

{
x(n) ∗ h(n), l1 ≤ n ≤ l1 + P − 1
0, otherwise (16)

y(2)(n) =

{
x(n) ∗ h(−n− 1), l2 ≤ n ≤ l2 + P − 1
0, otherwise

(17)

y(3)(n) =

{
x(−n− 1) ∗ h(n), l3 ≤ n ≤ l3 + P − 1
0, otherwise

(18)

y(4)(n) =

{
x(−n− 1) ∗ h(−n− 1), l4 ≤ n ≤ l4 + P − 1
0, otherwise

(19)

and

P = L+M − 1 (20)
l1 = z1 + z2, (21)
l2 = z1 + 2N − L− z2, (22)
l3 = 2N −M − z1 + z2, (23)
l4 = 2N −M − z1 + 2N − L− z2. (24)

y(i)(n), i = 1, 2, 3, 4 can be independently obtained by
appropriate z1, z2 and N [9], which will be used for the
convolution for flipping data augmentation using DCTs.

III. THE PROPOSED ALGORITHM

We derive the algorithm for flipping data augmentation
using DCTs from the analysis above section.

A. Derivation of convolution for flipping data augmentation
using DCTs

Let x(n1, n2) and h(n1, n2) be an image of size M ×M
and a filter of size L×L, repsectively. We define zero-padded
images, xN (n1, n2) and hN (n1, n2) as

xN (n1, n2) =

{
x(n1 − z1, n2 − z1), Rx

0, otherwise (25)

hN (n1, n2) =

{
h(n1 − z2, n2 − z2), Rh

0, otherwise (26)

where

Rx =

{
z1 ≤ n1 ≤ z1 +M − 1
z1 ≤ n2 ≤ z1 +M − 1

, (27)

Rh =

{
z2 ≤ n1 ≤ z2 + L− 1
z2 ≤ n2 ≤ z2 + L− 1

. (28)
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Fig. 1. The concept of convolution for flipping data augmentation using DCTs. The region in white denotes the region of 16 convolutions, y(i,j)(n1, n2),
where only the superscript (i, j) is indicated.
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Fig. 2. The proposed algorithm of convolution for flipping data augmentation in a convolutional layer. y(1,1), y(1,2), y(2,1), and y(2,2) represent the linear
convolutions of an image, the image flipped in left-and-right, the image flipped in up-and-down, and the image flipped in left-and-right and up-and-down,
respectively, with a filter.

The SESs, x̂2N (n1, n2) and ĥ2N (n1, n2), are expressed as

x̂2N (n1, n2) = x2N (n1, n2) + x2N (−n1, n2)

+x2N (n1,−n2) + x2N (−n1,−n2) (29)

ĥ2N (n1, n2) = h2N (n1, n2) + h2N (−n1, n2)

+h2N (n1,−n2) + h2N (−n1,−n2). (30)

Therefore, when x̂2N (n1, n2) is convolved with ĥ2N (n1, n2),
the output consists of 16 linear convolutions. Each linear
convolution is denoted by y(i,j)(n1, n2), i, j = 1, 2, 3, 4,
which corresponds to y(i)(n) with respect to n1 and y(j)(n)
with respect to n2 in (16) through (19).

In the circular convolution of period 2N × 2N , the output
samples over 2N × 2N are wrapped around. Under such
conditions, from (16) through (19), z1, z2 and N are derived

so that y(i,j)(n1, n2) is isolated as

z1 ≥ z2 + L, (31)
z2 > (M − 2)/2, (32)
N ≥ z1 + z2 + P + 1. (33)

Hence, when using DCTs in (9) and (12), conditions (31),
(32), and (33) enable us to obtain four linear convolutions,
y(i,j)(n1, n2), i, j = 1, 2. Fig. 1 illustrates the concept of
convolution for flipping data augmentation using DCTs. Zero-
padding makes space and isolates latent linear convolutions
involved by symmetrical circular periodicity of DCTs.

Note that z1, z2, and N decrease when the edges of
each linear convolution, y(i,j)(n1, n2), are superimposed. The
detailed conditions are omitted for space limitation.

B. Computational complexity

DCTs have fast algorithms as the DFT has FFTs. Based on
Wang’s fast algorithm [10], [11] of DCTs, the computational
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TABLE I
COMPUTATIONAL COMPLEXITY OF THE CONVOLUTION FOR FLIPPING
DATA AUGMENTATION BETWEEN AN IMAGE OF SIZE M ×M AND A

FILTER OF SIZE L× L. WHERE N = 2(M + L− 1) FOR FULL VERSION.

forward mu. 2× (N2 log2 N + 2N)
transform ad. 2× (3N2 log2 N − 2N2 + 2N)
product mu. N2

inverse mu. 1× (N2 log2 N + 2N)
transform ad. 1× (3N2 log2 N − 2N2 + 2N)

complexity of convolution between an image and a filter for
flipping data augmentation is summarized in Table I.

Let S and F be the size of minibatches and number
of filters, respectively. Spatial convolution needs SF (M −
L + 1)2L2 multiplications, while the proposed algorithm
requires S(2(N2 log2 N +2N)+N2)+F (N2 log2 N +2N)
multiplications, where N = 2(M + L − 1). For example,
when S = 100, F = 30, M = 28, and L = 5, spatial
convolution needs 43,200,000 multiplications, while the pro-
posed algorithm requires 6,091,520 multiplications. Thus, in a
convolutional layer, the operations of the proposed algorithm
is less than spatial convolution, although the size of output
feature map is larger.

Practically, in CNNs, once the DCT-2 coefficients of filters
are obtained, the coefficients are reused unless the coefficients
are updated, which reduces the number of operations. More-
over, in learning, zero-padding and applying DCT-2 to training
images as preprocessing also reduce the number of operations.

C. Steps of the proposed algorithm

In the forward pass, we pad zero-values to images and filters
in a convolutional layer according to (25), (26), (31), (32),
and (33). The DCT-2 is applied to the zero-padded images
and filters according to (9). Then, DCT-2 coefficients are
multiplied element-by-element. Finally, the inverse transform
is applied to the product to obtain the convolution for flipping
data augmentation according to (12). In the backward pass,
there is no need for zero-padding. Fig. 2 shows the proposed
algorithm of convolution for flipping data augmentation in a
convolutional layer.

IV. EXPERIMENTAL RESULTS

We show the performance of proposed algorithm using
limited MNIST dataset.

A. Experimental setup

We compared the proposed algorithm to spatial convolu-
tion, spatial convolution with flipping data augmentation, and
spatial convolution with zero-padding. In spatial convolution
with flipping data augmentation, 15,000 images were newly
generated by flipping 5,000 training images in left-and-right,
up-and-down, and both of them, i.e., a total of 20,000 images
were used for training. In spatial convolution with zero-
padding, the zero-values were padded to training images so
that the output feature map becomes the same size as that
of the proposed algorithm. In the proposed algorithm, whole

TABLE II
TEST ACCURACY [%] FOR CLASSIFYING HANDWRITTEN DIGITS IN

LIMITED MNIST.

algorithm test acc.
spatial conv. 95.3

spatial conv. with DA (flipping) 92.8
spatial conv. with zero-padding 95.3

proposed (limited) 96.7
proposed (full) 97.3

convolution was used as the output feature map (full version)
and part of convolution was used as the output feature map
(limited version).

The network for evaluation consists of a convolutional layer,
a pooling layer, two fully connected layers followed by the
softmax layer, where rectified linear unit (ReLU) activation
functions were used after the convolutional layer and the
fully-connected layer. The convolutional layer have 30 filters
of size 5 × 5. Adam [12] was used as the optimizer. The
cross entropy error was employed as the loss function. The
initial filter coefficients were randomly set. The configuration
had minibatches of size 100. Each configuration was trained
for 20 epochs with η=0.001. We used MNIST dataset that
consists of 60,000 handwritten digits images of size 28 × 28
and 10,000 test images. We limited the training images to
5,000 for evaluation.

B. Experimental results

Table II summarizes the test accuracy of the different
settings. Since the digits are not flipped in test images, the ac-
curacy of spatial convolution with flipping data augmentation
was worst (acc. = 92.8 %). The accuracy of spatial convolution
and spatial convolution with zero-padding was the same, 95.3
%. The proposed algorithm (full version) achieved the best
accuracy, 97.3%. Considering that the digits are not flipped
left and right in test images, the increase in accuracy by the
proposed algorithm can be expected more in general images
including flipped patterns, especially left and right flipping in
natural images. We also confirmed that the accuracy of the
CNN with the proposed algorithm increases fast in learning
process.

V. CONCLUSIONS

We proposed a novel algorithm of flipping data augmen-
tation in a CNN. Use of DCTs with zero-padding rather
than spatial convolution enables image-free flipping data aug-
mentation, i.e., without preparing flipped images beforehand,
the convolutions of such images with filters are calculated
in CNNs. We demonstrated the efficacy of the proposed
algorithm on a simple CNN to classify handwritten digits using
limited MNIST dataset. In the future work, we will evaluate
the algorithm in deep CNNs using general images and measure
the learning time with GPU implementations.
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