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Abstract—This paper proposes an innovative activity modeling
method for human activity recognition, which partitions the
human activity into a sequence of shared, meaningful, and
activity distinguishing states, called Motion Units, analog to
phonemes in speech recognition. The partitions and general-
ization define a human activity dictionary, which endows this
method with operability, universality, and expandability. Our
preliminary experiments demonstrate on-par accuracy with other
models while requiring fewer parameters and increasing sepa-
rability between phases. Furthermore, the developed model was
easily transferred with minor adjustments to two other datasets,
demonstrating the proposed method’s scalability. This framework
enables expandable, interpretable, and scaleable modeling and
recognition of human activities.

Index Terms—human activity recognition, Hidden Markov
Models, wearable sensors

I. INTRODUCTION

Human Activity Recognition (HAR) has been playing an
increasingly important role in daily life. In addition to video-
based recognition, researches on sensor-based biosignal pro-
cessing and topological modeling continued to emerge [1],
[2]. Sensor-based activity recognition seeks profound high-
level knowledge about human activities from multitudes of
low-level sensor readings [3]. Many time series modeling
technologies have proven their capabilities in HAR, such as
Deep Neural Networks (DNN) and Hidden Markov Models
(HMM). Both modeling technologies focus on the typical
HAR problem, in which inputs are multichannel time series
biosignals recorded from a set of sensors and outputs are pre-
defined human activities. The research on DNN usually aims
to refine the automatically learned features as the higher-level
abstract representation of low-level raw time series signals
through the deep architecture [3], [4]. In neural networks, the
training and recognition procedure of a target activity must
be divided into layers, which are often uninterpretable. In
contrast, the concept of “states” in the HMM definition-tuple
[5] may have the better explanatory power of the activities’
internal structure.

Previous research on HAR sequential modeling often uses a
fixed number of states, such as described in [6]. Similarly, the

end-to-end HAR research framework [7] and the pilot real-
time HAR system [8] modeled each activity with a single
HMM state, i.e., the fundamental units of model training and
recognition are “activities” themselves. Let us consider an ana-
logical example in HMM-based speech recognition. Supposing
“words” are modeled as the smallest recognizable units, the
accuracy on a small dataset might be higher than a system
relying on phonemes. However, this kind of recognizer has
low training efficiency, low expandability, and low adaptability.
The same holds for HAR.

HMM-based HAR has involved primitively expanding the
number of states: [8] demonstrated the results of repeated
experiments on the different number of states for each activity
model, and [9] applied six states on all activities for a feature
space study based on the best performance of repeated exper-
iments. In [6], researchers used ten states for each activity.
No matter the fixed number of states, each state’s meaning
is still unknown, similar to a DNN. Hence, there are two
problems worth further exploring. First, could/should each
activity contain a separate, explanatory number of states? If
the answer is “yes,” the explosion of possible combinations
renders seeking a model based on repeated experiments un-
feasible. Therefore, is there an approach to design HMMs
of human activities more rule-based, normalized over blindly
“trying”? As follows, we attempt to solve the two questions
using the proposed modeling technology, Motion Units.

II. METHODOLOGY

In order to illustrate our idea of human activity modeling
more clearly, we take a typical HMM-based word modeling
in speech recognition as an example.

Figure 1 shows a three-state Bakis-model [10] constructing
each phoneme (/d/ and /I/). Each state, also called sub-
phoneme, models parts of a phoneme (begin/middle/end).
Following this topology, we can practically build a simple
dictionary of the acoustic model without regard to contextual
dependency for simplifying notations: {did: /d/-/I/-/d/, dig:
/d/-/I/-/g/, gid: /g/-/I-/d/, gig: /g/-/I-/g/, digged: /d/-/I/-/g/-/d/,
gigged: /g/-/I/-/g/-/d/, . . .}.
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Fig. 1. A typical linear left-right HMM of the phoneme sequence “did.”

Fig. 2. A linear left-right HMM for one gait in the activity “walk.” Red:
states/sub-phases in the stance phase; green: states/sub-phases in the swing
phase.

Phoneme and sub-phoneme are conventional in the research
aspects of linguistic and speech signal processing. How to
analogically define the intern topology of human activity?

A. Phase and State Partitioning of Human Activities

Some recognition systems only focus on upper body activ-
ities, such as Airwriting [11], which belongs to the research
fields of gesture/posture recognition rather than activity recog-
nition. Most sensor-based HAR research, including the above-
listed pieces, uses and sometimes only uses body-worn sensors
placed below the waist, such as pant’s pockets, thighs, knees,
shanks, and feet, because the lower body plays a decisive
role in position translation, an essential part of most human
activities. Therefore, the research on gait analysis provides us
the first clue. [12] and [13] commonly distinguish two phases
into seven sub-phases during one full gait cycle. The initial
contact event is often used as the start/end event of a gait
cycle and may explicitly be modeled as seen in [14] and [15].
However, this does not mean that directly applying “seven” or
“eight” as the number of states to all activities will achieve the
best accuracy, as clarified in previous work [9]. For example,
some of these events have a too short duration that does not fit
a single HMM state, while others may require specific sensor
positions to distinguish. There is still a gap to bridge from
biological research and sports science to informatics modeling.

In collaboration with kinesiologists of the Institute of Sport
and Sports Science at Karlsruhe Institute of Technology, we
decided to model one gait cycle as five states, representing
three and two states respectively in the “two phases” gait
analysis, based on the investigation of sports and gait science
knowledge (e.g., [12]–[15]), the phase duration analysis, and
the inspiration from speech recognition (e.g., Figure 1).

Figure 2 depicts the modeling scheme of a typical gait-based
activity “walk.” A complete gait is divided into two phases
as observed from one leg: the stance (ground-contacting)
phase and the swing phase. In the stance phase, we adopted

three states (initial/middle/terminal) by analogizing the sub-
phoneme in speech recognition, while in the swing phase,
we designed only two states (initial/terminal). These states
can go by the name of sub-phases analogically. We have also
investigated that during a regular “walk” activity, the duration
of the stance phase varies between 200ms and 800ms, and
the swing phase between 200ms and 600ms, which provides
an essential reference for the window length selection in
subsequent tasks of training and recognition. Other gait-based
activities, such as “run,” “go upstairs/downstairs,” and “V-cut
to the left/right,” follow closely to the pattern of “two-phase-
five-state” gait modeling. In the study of partitioning, model
generalization (see Section II-B) has not been applied yet, so
each state of each activity has its unique name, i.e., currently,
in the entire HMM-dictionary, no activities share states.

We continued to design the HMM modeling of more activ-
ities progressively through the experience accumulation from
the modeling procedure of gait-based activities. The “two-
phase-five-state” topology fits mainly the gait-based activities.
Consequently, we must investigate the sports science knowl-
edge for each new activity and analyze the data to derive
the quantities and topology. For example, static activities like
“stand” and “sit” can be described using only one state; in ver-
tical shifting activities where the feet stay in place like “stand
up” or “sit down” are modeled by two states (initial/terminal);
“jump” is divided into three phases (takeoff/shift-up/land) with
five sub-phases (see Section II-C).

In the following, we use I, M, and T to denote the sub-
phases “initial,” “middle,” and “terminal” respectively, while
the phase names like “stance,” “swing,” “shift,” “takeoff,” and
“land” are abbreviated as St, Sw, Sh, To, and La respectively.
For example, TSw represents the state “terminal swing.”

It is worth mentioning that the number of generated states
based on sports science knowledge and signal duration analysis
is not necessarily the final optimal solution; thereupon, a
certain amount of repeated experiments for fine-tuning may
still help. Compared with the blindly “trying” or uniformly
use of a fixed number of states for all activities, the phase
and state partitioning is more interpretable and expandable,
which serves as a benchmark model for the following model
generalization research.

B. Model Generalization and Motion Units (MUs)

The next step is to study the generalizability of these states
to simplify the overall modeling further, for which we also
start with the analogy of speech recognition. In Figure 1 and
the example dictionary, the Bakis-models of the phoneme /d/,
/I/, and /g/ are used repeatedly in the modeling (without regard
to the variations due to contextual dependency), which will be
generalized in the construction of the dictionary to simplify
the entire HMM modeling topology, expand the vocabulary
efficiently, and help train the models practically. Even taking
account of contextual dependency and co-articulation, each
language has its typical set of primarily fixed phonemes, which
is undoubtedly beneficial for the model generalization. The
model generalization in HAR is not as intuitive and convenient
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as in speech recognition, as the following three characteristics
determine: First of all, an HAR system usually focuses on a
unique application scenario. Therefore, its included activities
are also application-specific, some of which even distinctive.
Secondly, the human activity itself is an infinitely extendable
connotation, inside which we can always discover, define and
even invent new activities. Last but not least, even though we
can find several basic and indispensable, but seemingly iden-
tical activities in different HAR researches, such as “stand,”
“sit,” “walk,” “run,” and “go upstairs/downstairs,” their exact
definitions and descriptions diverge due to different application
scenarios, equipment, and research requirements.

To explain our proposed model generalization scheme con-
cisely, let us take some gait-based activities introduced in Sec-
tion II-A as an example. In non-generalized modeling, “walk,”
“go upstairs,” and “run” all contain two phases and five states
that are different from each other, i.e., we must use fifteen
distinct states to model these three activities. Not to mention
repetitions like multiple gait cycles in each activity. Which
of these states can be generalized? The most straightforward
consideration is from inertial biosignals’ general knowledge:
the ISw states and the TSw states in these three activities’
swing phases cannot be merged. “Walk” and “go upstairs”
have different translational directions, while “walk” and “run”
have different movement speeds. We concentrate on the gen-
eralizability of the remaining three states in the stance phase.
There are two critical approaches:

Theoretical research (e.g., based on sports and biosignal
knowledge). Taking our in-house collected dataset CSL19
as an example, besides inertial sensors, we also use EMG
sensors on the thigh and shank, respectively. Based on the
EMG-signal knowledge and the statistical analysis of the
activities “walk” and “go upstairs,” the ISt states, regarded
as “muscle initialization for the movement about to happen,”
are mergeable, while the TSt states are not because the driving
muscles and the translational inertial signals are quite different.
What about the MSt states?

Experimental research. Repeated experiments or clustering
analysis can help investigate whether the theoretically indeter-
minable states like MSt are globally, partially, or hardly gener-
alizable. Notably, the complexity of the repeated experiments
in this step is not large-scaled. The preliminary partitioning
and theoretical generalization design have already provided
an appropriate baseline model. Moreover, although we have
studied the generalizability of the ISt and TSt states of “walk”
and “go upstairs” in theoretical research, it is still necessary to
use repeated experiments or clustering analysis to verify the
theoretical design’s reliability.

The final states are designed based on the approaches de-
scribed above, regardless of whether they are used repeatedly
in the applied modeling dictionary. We call them Motion Units
(MUs), and they are the generalized smallest recognizable
units composing each human activity in the HAR system.

C. MU-DNA (Directional Nomenclature & Anchored)

MUs can play an essential role in efficiently modeling
new activities and should be given interpretable and mean-
ingful names. To name an MU with a specific motion trial,
we propose a Six-Directional Nomenclature (6DN). In brief,
6DN means the six directions front (forwards), back(wards),
up(wards), down(wards), left(wards), and right(wards) in the
torso coordinate system, and their various combinations. We
can use the letters F, B, U, D, L, and R to abbreviate them,
respectively.

The theoretical and experimental research in the example
of “walk” versus “go upstairs” results in them sharing the
first two MUs, walk-ISt-F and walk-MSt-F. The remaining
third, fourth, and fifth MUs are named as follows, respectively:
“walk”: walk-TSt-F, walk-ISw-F, and walk-TSw-F; “go up-
stairs”: walk-TSt-FU, walk-ISw-FU, and walk-TSw-FU. It
is noticeable that “walk” in the above-mentioned MU names
represents the primary category of these two activities (they
are both gait-based activities; “go upstairs” is a sub-activity to
“walk” with a unique direction), St and Sw indicate the phases,
and I, M, and T denote the sub-phases, as described in Section
II-A. F (front) and FU (front+up) are related to more exclusive
states within 6DN to distinguish different MUs according to
movement directions.

Based on 6DN, we can quickly model new activities pre-
liminarily. For example, “V-cut to the left” is also a gait-based
activity that can be analogically modeled as {run-ISt-F, run-
MSt-F, run-TSt-FL, run-ISw-FL, run-TSw-FL}, and “jump
upwards” is modeled as {jump-ITo-U, jump-TTo-U, jump-
Sh-U, jump-ILa-D, jump-TLa-D}. For another example of
expandability, a football-specific activity “beat out a shot by
diving right-forward” may be modeled by combining “jump”
and the directions FUR and FDR of 6DN.

All activities described by 6DN can be decomposed into one
or several axial translational movements, which will cause the
body or body part to leave its original position. If an activity
or an MU does not involve translational movement, we can
regard them as “an Anchored activity/MU” and do not need
to use 6DN to name them. An obvious example is the activity
“stand” and its single MU stand, to which adding any direction
is superfluous.

In summary, for any activity and its attached MUs, they
either have translational movement (named with 6DN) or not
(Anchored). We abbreviate such a “Motion Units’ Directional
Nomenclature/Anchored” pattern as the “MU-DNA” of human
activities. Moreover, considering the literal aesthetics, we
can also abbreviate “Motion Units’ Generalization” as “MU-
Gene,” making it picturesque to think of MUs as MU-Gene
and MU-DNA (different from the biological meaning).

Rapid and straightforward modeling does not make up the
entirety of model research. Adequate repeated verification
experiments and parameter tuning are still essential.

III. EXPERIMENTS AND EVALUATION

The real-world applicability of the introduced framework
is evaluated by comparing five models (single-state, fixed-
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state, partition, and Motion Unit topologies, as well as a
skyline) across three datasets (CSL19 [16], UniMiB SHAR
[17], and ENABL3S [18]). All datasets focus on Activities
of Daily Living (ADL) like “walk,” “go upstairs,” and “sit.”
Additionally, the CSL19 dataset includes several sport-related
activities, while the UniMiB SHAR dataset includes different
types of falls.

The upper and lower reference in the experiments is created
using a six-state (listed as “Fixed” in Table I) and single-
state (listed as “Single” in Table I) topology, as these have
been proven competent [7]–[9]. The first topology (listed as
“Partition” in Table I) based on our framework introduces
cycles as well as phase and state partitioning as described in
Section II-A. The second topology (listed as “Motion Units”
in Table I) shares states between activities and implements
MUs as described in Section II-B.

The partitioning and MU topologies have been developed
for the CSL19 dataset and then applied directly to the UniMiB
SHAR and ENABL3S datasets, where both datasets’ unique
activities extended the CSL19 topology. In the UniMiB SHAR
and ENABL3S datasets, the precise number of gait cycles per
segment varies. Therefore, a single gait cycle is modeled, and
an initial and terminal “random”-state consumes all other data
for the partitioning and MU experiments.

Lastly, a skyline based on [16] for the CSL19 and UniMiB
SHAR datasets is added. The ENABL3S skyline is created
using the partitioning model. Note that the UniMiB SHAR
accuracy is 4% lower than the reference as the LDA-based
feature space reduction was omitted. The skylines are allowed
up to thirty Gaussians per Gaussian Mixture Model (GMM) in
each HMM state, while all other models are limited to seven
Gaussians per GMM. This behavior ensures a good skyline
and a comparable number of parameters in the topology
experiments, as the number of parameters scales proportionally
with the number of states in the HMM topology.

The implemented recognizer and chosen hyperparameters
are based on [16]. The recognizer for the CSL19 dataset uses
100ms Hamming windows with an overlap of 50ms. Mean
and root-mean-square features are calculated per window,
and the whole sequence normalized. On the UniMiB SHAR
dataset, 400ms Hamming windows with an overlap of 320ms
and normalization is used. A 20-dimensional combination
of features, including min, slope, and spectral spread, was
chosen from the TSFEL [19] library with an HMM-based
greedy forward feature selection. The hyperparameters for the
ENABL3S dataset were determined by grid search in person-
independent 10-fold cross-validation and are as follows: 50ms
Hamming windows with 20ms overlap with normalization. As
features, mean, slope, spectral centroid, and spectral kurtosis
are calculated for each sensor channel.

In each experiment, the HMM recognizer is evaluated us-
ing person-independent leave-one-subject-out cross-validation
with the full sequence. Additionally, an independent evalu-
ation is performed on the force-aligned and as vectors re-
labeled data (excluding the random states’ data) for each a k-
nearest neighbors algorithm (KNN), linear discriminant anal-
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Fig. 3. HMM force-alignments based on the “Partition” topology for the
activity “walk” in the CSL19 dataset. Twenty randomly sampled sequences
are plotted on a percentage-based time axis. The lines show each sequence,
while colors/shapes denote each vector’s state as determined by the alignment.

ysis (LDA), and nearest centroid classifier. Figure 3 indicates
this duality: the HMM recognizer are evaluated with sequence
data (blue lines), and independently trained HMMs provide
alignments (colored points) for the LDA, KNN, and centroid
classifiers. The figure additionally illustrates that the HMM
learns correct meanings, as the states, such as ISt and MSt,
are correctly and automatically labeled [13].

Table I lists the experimental results and reads as follows:
the number of states denotes the sum of individual states across
all activities and denotes the number of target classes for the
LDA to learn. The number of Gaussians denotes the sum
of unique Gaussians and, in combination with the number
of units, indicates the number of trainable parameters. The
HMM column denotes recognition accuracy over activities,
while the LDA accuracy provides an indirect measure of
state separability and is not directly comparable to the HMM
accuracy. The KNN and nearest centroid classifiers are omitted
for brevity as they highly correlate with the LDA evaluation.

Our experiments show that phase and state partitioning can
retain recognition accuracy compared to a fixed-state topology
while requiring fewer training parameters. Table I shows a
decrease of 0.3%, 0.7%, and 2.4% absolute on the CSL19,
UniMiB SHAR, and ENABL3S datasets, respectively. At the
same time, the trainable parameters decrease by 40%, 22%,
and 34% relative, and state separability, as indicated by the
LDA accuracy, increases significantly for most datasets. The
MUs in the following experiment further decrease the number
of trainable parameters while retaining (UniMiB SHAR and
ENABL3S) or slightly decreasing accuracy (3.3% on CSL19).
In continuation of the partitioning experiments, state separa-
bility is increased further.

Too few trainable parameters might explain the distinct
performance drops. Recall that the only difference between
skyline and partitioning settings on the ENABL3S dataset is
the allowed Gaussians (thirty and seven respectively), which
is penalized with a drop of 2.4% absolute accuracy. A similar
lack of parameters might explain the difference between par-
titioning and MU topology on the CSL19 dataset, but further
investigation is required as several hyperparameters differ.

When comparing these results to state-of-the-art, it is es-
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TABLE I
MOTION UNITS: PRELIMINARY RESULTS

Model CSL19 UniMiB SHAR ENABL3S
#States #Gauss. HMM LDA #States #Gauss. HMM LDA #States #Gauss. HMM LDA

Skyline 94 1347 0.936 0.232 141 1234 0.727 0.247 32 582 0.948 0.473
Fixed 132 924 0.939 0.214 92 631 0.715 0.134 42 294 0.948 0.386
Partition 94 658 0.936 0.234 81 557 0.708 0.261 32 224 0.924 0.467
Motion Units 57 399 0.903 0.299 77 529 0.707 0.284 28 196 0.923 0.465
Single 22 154 0.892 0.081 17 119 0.640 0.169 7 49 0.917 0.336

sential to note that higher performances might be achieved
without the restriction in trainable parameters. The results of
[16] for the UniMiB SHAR and CSL19 datasets have been
replicated without feature space reduction as the skyline in
Table I. The MU-based recognizer has slightly lower accuracy
(3.3% on CSL19 and 2.0% on UniMiB SHAR) but uses sig-
nificantly fewer parameters while increasing state separability
and interpretability. On the ENABL3S dataset, [20] achieves
93.60% with a user-adaptive system, and [21] achieves 92.74%
(reported as 7.26% error) with a CNN-based approach, both
with a leave-one-out cross-validation scheme. Our skyline
(94.8%) with partitioning as well as the MU-based recognizer
(92.3%) compare well here.

IV. CONCLUSION AND FUTURE WORK

This paper introduced an innovative, interpretable, and
easily extensible modeling technique for HMM-based HAR,
by utilizing phase/state partitioning and state generalization
across activities, similar to phonemes in speech recognition.

The preliminary experiments show that modeling activities
with phase/state partitioning and state generalization allow for
fewer parameters while maintaining recognition accuracy and
improving class separability. Furthermore, applying the same
topology to three datasets showed that the framework scales
extraordinarily across different sensors and sensor positions.

The proposed method bridges the gap from movement
science to machine learning and opens several new topics.
The easy extension allows expansion to further sensor setups,
new activities, and additional datasets. The higher separability
between phases enables an extensive feature study and a neural
network as HMM emission model. Most importantly, this lays
the foundation for well-defined meaning-carrying and activity-
composing units for HAR: Motion Units.
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