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Abstract—In this paper, we propose an iterative method
to solve the nonlinear blind source separation (BSS) problem
when the sources are sparse. The main idea to solve the problem
is approximation of the nonlinear mixture functions with the
polynomial functions. Then, using an alternating approach,
the sources and the coefficients of polynomial functions are
estimated. The proposed approach is similar to one employed
in dictionary learning algorithms for sparse representation.
In fact, in iterations where the sources are estimated, we
cluster the signals, and in iterations where the coefficients of
polynomial functions are estimated, we assign a polynomial
manifold to each cluster. Experimental results demonstrate the
effectiveness of the proposed method relative to state-of-the-art
methods.

Index Terms—Blind source separation, nonlinear mixtures,
sparse sources, polynomial approximations

I. Introduction
The goal of blind source separation (BSS) is extracting

the sources from the recorded signals in the receiver when
the mixture functions are unknown and some prior infor-
mation are available about the sources. In general, BSS
can be categorized into linear and nonlinear depending on
the mixture functions. The linear BSS has widely been
investigated in different scenarios, while the nonlinear
BSS has not been explored comprehensively because it
is much more complicated than the linear BSS [1]. In this
study, the focus is on the nonlinear BSS problem when
the sources are sparse signals which can happen in several
applications such as system identification tasks. In the
following, we summarize the well-known researches which
consider this scenario for performing BSS [2]–[5], and then,
state our contribution.

In [2], [3], it is assumed that the mixture functions
have linear-quadratic (LQ) forms. The proposed strategy
is canceling the nonlinear elements of the outputs in the
beginning. It is shown that by subtraction of the outputs
with some specific weights, which must be estimated, the
nonlinear terms are canceled in the considered model.
After omitting the nonlinear terms, a linear BSS method
is employed to retrieve the sources. The main drawback of
this approach is that the structure of the mixture functions
is assumed to be known while this information is not
available most of the time in practical situations.

Unlike the previous approach, the authors of [4], [5] do
not constrain the mixture functions to specific structures,
and they obtain the unknown parameters by analyzing
the scatter plot of the observations. They propose a two-
stage procedure: 1) clustering; and 2) manifold learning
for performing BSS. The idea has been taken from the
geometrical method employed for performing SCA in
the linear model [1]. There are two main drawbacks in
this idea. The first drawback is the performance of the
proposed method. If the clustering does not perform
perfectly, the accuracy of the manifold learning would
severely decreases. Hence, there must be an alternation
between clustering and manifolds learning to get accurate
results similar to the approach used in dictionary learning
algorithms for sparse representation. The second drawback
is that the implementation of the mentioned idea for
data with more than three dimensions is very difficult.
The clustering of such data while there may be several
overlapped areas is not possible. For this reason, all of the
results presented in [4], [5] were obtained by considering
two sources and two outputs.

This study tries to solve the above drawbacks and
proposes a more general framework for retrieving sparse
sources from nonlinear mixtures. We first substitute the
mixture functions by their polynomial approximations.
Then, using an alternating minimization approach, the
coefficients of polynomial functions and sparse sources are
alternately estimated until convergence of the parameters.
This means that we alternately perform the clustering and
manifold learning.

II. Proposed Method
We express the model as:

ym = fm(s1, s2, ..., sN ) = fm(s)

m = 1, 2, ...,M, ∥s∥0 = N0 ≪ N (1)

where fm : RN → R, sn ∈ R, and ym ∈ R respectively
show the mth mixture function, the nth source, and the
mth observed signal. s = [s1, s2, ..., sN ]T ∈ RN and N0 ∈
N represent the vector of sources and the sparsity level,
respectively. Without loss of generality, we suppose that:
1) the outputs of the mixture functions are zero when
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the inputs are all zero; and 2) the sources are distributed
in the convergence region of the Maclaurin series of the
mixture functions.

If we approximate the mixture functions by the polyno-
mial functions up to order K and use the matrix notation,
we get

y = F s̃ (2)

where y shows the observed signals, the entries of F are
corresponding to the coefficients of polynomial approxi-
mations, and s̃ consists of the powers of s1, s2, ..., sN ,
and all of their multiplication terms up to order K.

If we respectively stack y and s̃ at different time instants
in the columns of Y and S̃, we get

Y = F S̃ (3)

Hence, we should factorize Y into F and S̃ in such a
way that each column of S̃ is a block sparse vector with
a specific structure. There is a noticeable point regarding
the existing scaling ambiguity between F and S̃ in the
factorization considered in (3). It can be easily shown that
by considering the columns of F which are corresponding
to the first power of s1, s2, ..., sN , as unit norm vectors,
the existing scaling ambiguity between F and S̃ would be
omitted [1].

Based on (3) and the mentioned remarks, we can find
that there are similarities between the problem considered
here and the dictionary learning problem for sparse
representation. Hence, we can tackle the problem in a
similar manner. We minimize the representation error
∥Y−F S̃∥2F subject to the aforementioned constraints and
find the parameters. We use an alternating approach to
minimize the representation error. This means that some
feasible initial values are considered for F and S̃, then,
the following two steps, i.e., S̃-Update and F-Update, are
alternately performed until convergence of the parameters.

1) S̃-Update: Based on the considered objective func-
tion, i.e., the representation error, this step must indi-
vidually be performed for the data at each time instant,
i.e.,

{ŝ1, ŝ2, ..., ŝN} = argmin
s1,s2,...,sN

∥y − F s̃∥22

s.t. ∥s∥0 = N0 (4)

We use the idea of matching pursuit (MP) to perform
this step [6]. In fact, we find the active sources one by
one. At first, we find the source which has the most
contribution in the generation of y. If we consider the
columns of F which are corresponding to the powers of sn
in F(n), the following constrained optimization problem
must individually be solved for n = 1, 2, ..., N :

ŝn∗ = argmin
sn

∥y − F(n)
[
sn s2n ... sKn

]T ∥22 (5)

Then, the source leading to the smaller representation
error would be considered as the first active source. It

should be noted that (5) can be optimized using many
of the developed algorithms exploited for optimization
of polynomial functions such as GpoSolver [7]. Then,
we remove the contribution of the first estimated source
from y, and find the next source which has the most
contribution in the generation of the observed signal.

We repeat the aforementioned procedure until finding
N0 sources, and finally, make the remaining sources equal
to zero.

2) F-Update: In this step, the following constrained
optimization problem must be solved:

F̂ = argmin
F

∥Y − F S̃∥2F

s.t. ∥F(:, z)∥2 = 1, z ∈ Σ (6)

where Σ denotes the indices of columns of F which are
corresponding to the first power of s1, s2, ..., sN . In
fact, the constraint mentioned in (6) solves the scaling
ambiguity problem. We use the idea of method of optimal
directions (MOD) [8] to solve the problem which leads to

F̂ = YS̃† (7)

followed by normalizing the columns of F̂ whose indices
exist in Σ. It should be mentioned that † denotes the
pseudo inverse.

By performing a few iteration between S̃-Update and
F-Update, the unknown parameters are determined.

Before presenting the simulation results, three impor-
tant points must be discussed at the end of this section.

The first point is regarding the sparsity level (N0). We
assumed that this parameter is known. Usually, some prior
information is available about the system and data. Hence,
the parameter may exist in the prior knowledge. Moreover,
the parameter can be found using the cross validation
frameworks. For instance, the system is trained and tested
with different sparsity level (N0). Then, the sparsity level
which leads to the minimum training and testing error is
considered as the optimum sparsity level.

The second point is about the polynomial approxima-
tions. The polynomial bases are not necessarily optimal.
However, we need to consider some approximations to be
able to track the problem. In this study, we have em-
ployed polynomial approximations because they convert
the problem to a dictionary learning problem, and hence,
the problem becomes tractable.

The last point is about the identifiability issues of
the considered nonlinear model. Similar to the linear
BSS problem where there are permutation and scaling
ambiguities in retrieving the sources, it can be shown that
in the nonlinear BSS problem stated in (1), the sources
can be retrieved up to a permutation and an invertible
function. The first ambiguity means that the order or the
arrangement of the sources can not be found which is
not important in BSS, while the second ambiguity is very
important. The second ambiguity states that if we consider
the invertible functions gn : R → R for n = 1, 2, ..., N such

1512



that sn = gn(un), then, both of sn and un are accepted
estimations for the nth source, because

ym = fm(s1, s2, ..., sN ) = fm(g1(u1), g2(u2), ..., gN (uN ))

m = 1, 2, ...,M (8)

This ambiguity makes the objective functions, used to
find the sources in the nonlinear model, highly non-convex
because there are infinite number of invertible functions.
However, in the proposed method, due to the similarity
of the factorization proposed in (3) and the considered
constraints with the dictionary learning problem, it can
be shown that the parameters are uniquely obtained up
to a sign or a permutation. The reason that the second
ambiguity does not exist in the proposed method is that
we restrict the search space of the mixture functions to
the polynomial functions with order K which can describe
the mixture functions as best as possible. This means
that the original sources (sn for n = 1, 2, ..., N) and the
actual mixture functions (fm for m = 1, 2, ...,M) are not
necessarily estimated in the proposed method, however,
the sources (un for n = 1, 2, ..., N) and the combination of
the actual mixture functions (fm for m = 1, 2, ...,M) with
the secondary invertible functions (gn for n = 1, 2, ..., N)
which leads to the best polynomial functions of order K
are retrieved in the proposed method.

III. Results
A. First Simulation

We assume that M = N = 3 and N0 = 2, and then,
generate the signals for 1000 samples using:

y1 = α1 exp(s1) + α2 exp(2s2) + α3 exp(3s3) + β1

y2 = α1 exp(2s1) + α2 exp(3s2) + α3 exp(s3) + β2

y3 = α1 exp(3s1) + α2 exp(s2) + α3 exp(2s3) + β3

(9)

where α1 = α2 = α3 = 0.267 are some coefficients to make
the columns of F which correspond to the first power of
s1, s2, s3 unit norm, and β1 = β2 = β3 = −0.801 are used
to make the simulated signals zero when the sources are
all zero. The positions of the nonzero entries of the sources
are randomly selected, and their values are chosen from
uniform random variables distributed between [−1 1]. The
joint distribution of the sources and the generated signals
are shown in Fig 1.

We consider K = 5 as the order of polynomial approx-
imation, and then, apply the proposed method on the
simulated signals. The joint distribution of the sources
and the estimated sources are shown in Fig. 2.

As shown, the estimated sources are invertible, or in
other words, one-to-one functions of the actual sources
which shows that the BSS has been performed perfectly
using the proposed method. It should be noted that the

Fig. 1: The scatter plot of the sources (left) and the
generated signals (right) for the problem stated in (9).

Fig. 2: The scatter plot of the sources and their estimations
for the problem stated in (9).

Fig. 3: The representation error (in dB) versus iteration
number by considering different order for the polynomial
approximations of the exponential mixture functions.

goal of BSS is separating the sources and not reconstruct-
ing the sources. Here, the separation of the sources has
been performed. For reconstruction of the sources, we need
more information about the sources or the structure of
mixture functions.

To show the effect of choosing K on the performance of
the proposed method, and also, to illustrate the conver-
gence behavior of the proposed method, the representation
error, i.e., ∥Y −F S̃∥2F , versus iteration number is shown
in Fig. 3 for different K.

As shown, the representation error decreases when K
increases because the exponential functions have Maclau-
rin series expansion, and they are better estimated using
higher order polynomial functions. However, it should be
noted that by increasing K, the computational complexity
of the proposed method increases because the dimension
of matrices F and S̃ increases.
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TABLE I: MSE (in dB) in different SNR (in dB).

Method \SNR 10 20 30 100
Method1 -14.3 -51.6 -94.3 -124.6

Proposed Method -17.4 -53.6 -89.3 -122.5

B. Second Simulation

We repectively consider the proposed methods in [3]
and [5] as Method1 and Method2 and compare their
performance with the proposed method. It should be
emphasized that the number of methods dealing with
nonlinear BSS of sparse sources are so limited, and we
selected the best methods in the field for comparison.

We individually compare the methods with the proposed
method, because the methods cannot be applied on any
type of mixture functions and easily generalized to any
model orders. For each method, we tried to generate
the data similar to the corresponding reference paper as
explained in the following.

1) Comparison with Method1: We consider M = 3,
N = 3 and N0 = 2, and generate the outputs for T = 1000
samples using a LQ structure using:y1y2

y3

 =

−0.56 0.36 −0.33
0.33 0.76 0.32
0.75 0.53 −0.88

s1s2
s3


+

 0.88 −0.81 0.32
−1.14 −2.94 −0.75
−1.06 1.43 1.37

s1s2s1s3
s2s3

+

n1

n2

n3

 (10)

The noises n1, n2, and n3 are independent and iden-
tically distributed (i.i.d) Gaussian noise with N (0, σ2)
distribution. Since the LQ structure has also a polynomial
form, we considered the columns of the first mixture
matrix, which are corresponding to the first power of
s1, s2, and s3, unit norm to estimate the actual sources.
Hence, we use the mean squared error (MSE) criterion
to evaluate the performance of the methods. It should be
noted that the permutation and sign ambiguities must be
omitted before calculation of MSE.

We apply Method1 and the proposed method (with K =
2) on the considered nonlinear model in different SNR. The
obtained MSE over 100 trials in different SNR are reported
in Table I. Moreover, the averages of convergence times
over all of the trials and SNR are 5.8 sec and 11.3 sec for
Method1 and proposed method, respectively.

As reported, the methods have similar performance,
however, the computational complexity of the proposed
method is higher than Method1. The main reason is
that no prior information about the mixture functions is
considered in the proposed method. When we set K = 2
as the order of polynomial approximations in the proposed
method, the terms s21, s22, and s23 also insert in the
proposed factorization. Hence, it takes more time to find
the optimum values of matrices F and S̃.

Fig. 4: The scatter plot of the sources (left) and the
generated signals (right) when the mixture functions are
sinusoidal functions.

TABLE II: Averages of N-ENF (in dB) in different SNR
(in dB).

Method \SNRdB 10 20 30 100
Method2 -3.1 -48.6 -79.3 -99.6

Proposed Method -16.3 -60.3 -83.1 -102.9

2) Comparison with Method2: We consider M = 2,
N = 2, and N0 = 1, and generate the outputs for T = 1000
samples using:

y1 = sin(s1 − 0.5s2) + n1, y2 = sin(s2 − s1) + n2 (11)

The noises n1 and n2 and the sources are generated similar
to the previous sections. The joint distribution of the
sources and the generated signals are shown in Fig. 4
when there is no noise.

We apply Method2 and the proposed method (with
K = 5) on the considered nonlinear model in different
SNR. For evaluating the performance of the methods,
we first fit a nonlinear curve using smoothing splines to
the joint distribution of the estimated sources and actual
sources. Then, the average of the error of this fitting
in different sources, which is called normalized error of
nonlinear fit (N-ENF), is considered as the evaluation
criterion [5]. The averages of the obtained N-ENF over 100
trials in different SNR are reported in Table II. Moreover,
the averages of convergence times over all of the trials
and SNR are 120.7 sec and 128.2 sec for Method2 and the
proposed method, respectively.

As reported, the methods have similar computational
complexity, however, the proposed method has better
performance than Method2 especially in low SNR. The
reason is that the data are first clustered in Method2,
and then, some manifolds are fitted to the data, and this
procedure does not repeat alternately. Therefore, since
the initial clustering cannot be performed perfectly in low
SNR, it severely affects on the performance of the manifold
learning and the accuracy of the final results. Moreover,
the main advantage of the proposed method relative to
Method2 is that it can be generalized to higher order
nonlinear models, while the implementation of Method2 is
very difficult even in the three-dimensional space (M = 3).
For this reason, all of the results presented in [5] are for
two-dimensional data.
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TABLE III: Number of components in s̃ when N = 15
and K = 3.

Term si s2i si sj s3i si s
2
j si sj sk Total

Number of terms 15 15 105 15 210 455 815

TABLE IV: Percentage of successful recovery rate in
different SNRdB and N0.

N0 \SNRdB 10 20 30 100
3 79.1 85.4 88.3 92.4
4 68.2 81.3 85.6 87.3
5 5.7 74.6 83.2 86.4

C. Third Simulation

In this simulation, we show the efficiency of the pro-
posed method for identification of a nonlinear system
when the inputs are sparse signals. We use the successful
recovery rate criterion to report the results. Similar to
dictionary learning problems, if we consider each column
of F as an atom, the successful recovery rate represents
the number of correctly estimated atoms divided by the
number of atoms. We say that an atom is correctly
estimated if its cross correlation coefficient with the actual
atom was above 0.99. In fact, this criterion shows the
performance of the proposed method in retrieving the
actual nonlinear systems.

We assume that the outputs, which are M = 10
dimensional signals, are generated by the nonlinear mix-
ture of N = 15 sparse sources. We assume that the
nonlinear mixture functions can be expressed using the
polynomial approximations up to order K = 3. Based on
the considered parameters, it can be easily shown that s̃
has 815 entries as reported in Table III.

We generate the matrix F by a random matrix of
size 10× 815 with zero-mean and unit-variance indepen-
dent and identically distributed (i.i.d.) Gaussian entries,
followed by normalizing the columns of F which are
corresponding to the first power of the sources. At each
time instant, we randomly consider N0 sources as the
active sources. Then, the values of these sources are chosen
from Gaussian random variables with zero-mean and unit
variance. The output signals are generated according to (2)
for 20000 samples. Finally, the zero-mean white Gaussian
noise is linearly added to the outputs signals.

The average percentage of the successful recovery rate
over 100 trials in different SNRdB and N0 is reported in
Table IV.

As reported, when SNRdB increases and N0 decreases,
the quality of the estimation of the nonlinear system
increases. It is worth mentioning that none of the methods
explained in the previous subsection can be employed
for solving the considered nonlinear BSS problem due to
the dimensions considered for the nonlinear system and
sources.

IV. Conclusion
We developed an alternating projection method to

solve the nonlinear BSS of sparse sources using the idea
employed in dictionary learning problem. We confirmed
the efficiency of the proposed method using simulated
data in different scenarios. Moreover, we compared the
proposed method with state-of-the-art methods in differ-
ent simulations. The proposed method has three main
advantages in comparison with other methods. The first
advantage is that no prior information is required about
the structure of mixture functions. The second advantage
is regarding the performance of the proposed method.
Since the clustering and manifold learning are alternately
performed in the proposed method, the accuracy of BSS
increases. Finally, the last advantage is that the proposed
method can be generalized and applied on data with more
than three dimensions.
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