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Abstract—A very challenging task in financial forecasting is
the accurate prediction at multiple future time steps based on
historical prices. In this paper, a multi-step ahead dyadic particle
filter is proposed for stock price prediction. A dyad corresponds
to a latent vector modeling each stock and a latent vector
modeling the group of companies in the same category. The
stock latent vectors evolve through time according to a geometric
Brownian drift parameter, which enables stock latent vectors to
capture the erratic price evolution appearing in future time steps.
The multi-step ahead framework of the dyadic particle filter and
the drift parameter lead to more accurate predictions compared
to state-of-the-art techniques.

Index Terms—multi-step ahead prediction, price prediction,
particle filtering, Brownian drift

I. INTRODUCTION

Multi-step ahead forecasting is the prediction of a sequence
of future time steps [1]. Since financial time series exhibit
chaotic patterns, accurate multi-step ahead price prediction
is very difficult given only past prices. Contrary to single-
step forecasting, multi-step ahead prediction can optimize
investment strategies.

A variety of works in multi-step ahead prediction has
emerged the last years. Some of them apply co-evolutionary
multi-task learning [2]. Recently, Google Cloud AI Research
developed a Temporal Fusion Transformer to forecast multi-
horizon time series [3]. LSTNet and DeepAR have been
successfully applied to multi-step prediction [4] [5]. However,
deep neural networks (DNNs) require frequent recalibration
and usually suffer from computational infeasibility [6]. Several
DNNs require a plethora of heterogeneous data sources, i.e.,
static metadata, upcoming important dates, historical traffic,
etc. Other, assume that some of this heterogeneous information
is static and known in the future [5] [7] [8].

Multi-stage prediction methods rely only on historical val-
ues and predictions, but they propagate the errors into future
predictions [1]. As the length of the prediction steps increases,
the prediction error becomes larger. Usually, the diffusion
modeling relies on the volatility of the exact previous time
step, following a Bayesian context [9] [10].

A multi-step ahead dyadic particle filter (multiT-DPF) is
proposed for stock price prediction, extending the dyadic
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particle filter (DPF) [11] where only the next day opening
price is predicted based on the opening price of the current
day. Contrary to DPF, multiT-DPF is an online method, which
utilizes 10 historical prices and predicts the next 10 ones. A
dyad consists of a stock latent vector and a market segment
latent vector, modeling the price evolution and market segment
evolution, respectively. Here, the stock latent vectors are not
static as in [11], but they evolve dynamically through time
according to a geometric Brownian motion log drift parameter.
The log drift parameter captures volatility relies on the drifts
appeared 10 time steps back in time. Hence, the modeling is
not equivalent to merely attaching noise to a random variable
to ensure price volatility tracking. A Taylor expansion around
the previously observed drift parameter approximates the neg-
ative log-likelihood of the posterior distribution. The first and
second-order derivatives of the negative log-likelihood with
respect to the previously observed drift parameter are approx-
imated by novel analytical expressions. The prior covariance
matrices of the stock latent vectors are formed by attaching the
aforementioned volatility information to the main diagonal of
the posterior covariance matrices at the previous time steps. A
particle coefficient vector is computed through the product of
the diagonal elements of the prior covariance matrices of the
latent vectors, which form a dyad. Efficient particles are drawn
according to this particle coefficient vector. A small number of
particles is shown to be sufficient keeping the computational
complexity low. Experiments have demonstrated that multiT-
DPF outperforms the state-of-the-art methods in [3], [4], and
[5].

To sum up, the novel contribution of the paper is in the pro-
posal and thorough assessment of a multi-step framework for
a dyadic particle filter, which ensures computational feasibility
since it relies exclusively on the 10 past prices to predict the
10 next ones. Novel approximations of the Brownian log drift
parameter are tested which endow multiT-DPF with robust
tracking abilities, avoiding thus error propagation.

The multi-step ahead framework of the dyadic particle
filter is presented in Section II. Experimental results are
demonstrated in Section III, and conclusions are drawn in
Section IV.
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II. MULTI-STEP AHEAD DPF

A. Latent state structure

Kalman filtering is applied to construct the latent state of
multiT-DPF through a probabilistic approach. Let t be a time
instant and t = mod(t, d) + 1 be a time step in the event
k = 0, 1, . . . , [Nd ] − 1, where N denotes the total number
of prices. At every event k, d prices are given as input to
multiT-DPF and d predictions are provided in the output. At
the current event k, the latent state is constructed by d dyads
i, j formed by a stock latent vector s

(k)
i [t] ∈ Rn and a segment

latent vector m
(k)
j [t] ∈ Rn. The state model of multiT-DPF

is formed by the multivariate Gaussian prior distributions of
these latent vectors [12]

s
(k)
i [t] ∼ N

(
µ(k)

si [t],Σ(k)
si [t]

)
m

(k)
j [t] ∼ N

(
µ(k)

mj
[t],Σ(k)

mj
[t]
)

(1)

where µ
(k)
si ,µ

(k)
mj ∈ Rn are the prior mean vectors and

Σ
(k)
si ,Σ

(k)
mj ∈ Rn×n are the prior covariance matrices. Every

prior mean vector at event k is the respective posterior one at
the previous event k−1, i.e., µksi [t] = µ

′(k−1)
si [t]. Here, Σ

(k)
si [t]

is not considered fixed as in [11], but it evolves according to
a geometric Brownian motion

Σ(k)
si [t] = Σ′(k−1)si [t] +

(
d α(k)

si [t]
)
I (2)

where Σ′(k−1)[t] is the posterior covariance matrix at event
k − 1, I ∈ Rn×n is the identity matrix, and α

(k)
si [t] is

the drift value of the Brownian motion of si at event
k. Equivalent expressions hold for µ

(k)
mj . At the current

event k, the posterior probability density functions (pdfs)
of the latent vectors are also multivariate Gaussians, i.e.,
s
′(k)
i [t] ∼ N

(
µ
′(k)
si [t],Σ

′(k)
si [t]

)
. The respective expression

holds for m
′(k)
j [t]. After having observed the past d prices

y(k−1)[t], t = 1, ..., d at k − 1, variational inference is
applied to approximate the true joint posterior distribution
p
(
s
(k)
i [t],m

(k)
j [t]

)
. This is accomplished by a factorized distri-

bution, i.e., q
(
s
(k)
i [t],m

(k)
j [t]

)
≈ q
(
s
(k)
i [t]

)
q
(
m

(k)
j [t]

)
, where

q(·) is an approximate distribution [13]. The objective is to
minimize the Kullback-Leibler (KL) divergence KL(q||p) =
Eq
[

log q
p

]
, where p(·) is the true posterior distribution and

Eq[·] is the expectation with respect to q(·). Then, a coordinate
ascent update is applied to obtain the optimal parameters of
q(·) which are [12] [14] [15]:

Σ
′(k)
si [t]=

([
Σ

(k)
si

]−1
[t]+

µ′(k)mj
[t]
[
µ′(k)mj

]T
[t]+Σ′(k)mj

[t]

σ2
ij

)−1
µ
′(k)
si [t]=Σ

′(k)
si [t]

(
y(k−1)[t]µ′(k)mj

[t]

σ2
ij

+
[
Σ

(k)
si

]−1
[t]µ

(k)
si [t]

)
(3)

where y(k−1)[t] is the price of the previous event k− 1 at the
respective time step t and σ2

ij is the variance. Similar updates
are considered for Σ

′(k)
mj ,µ

′(k)
mj [t].

B. Volatility

In Eq. (2), α(k)
si [t] defines the volatility of the prior latent

vector µ(k)
si [t], where α(k)

si [t] = ea
(k)
si

[t] is a geometric Brown-
ian motion. Let a(k)si [t] ∼ N

(
a
(k−1)
si [t], γ d

)
be the Brownian

log drift value, where γ is an additional drift parameter [12]. A
second-order Taylor expansion about its value at the previous
event k−1 at t = 1, ..., d, a(k−1)si [t] is applied to compute this
log drift value as [12]

f(a(k)si [t]) ≈ f(a(k−1)si [t]) +
(
a(k)si [t]− a(k−1)si [t]

)
·

ḟ(a(k−1)si [t]) +
1

2

(
a(k)si [t]− a(k−1)si [t]

)2
f̈(a(k−1)si [t]) (4)

where f(·) = − ln p(s
(k)
i [t], a

(k)
si [t]) denotes the negative

log-likelihood, and ḟ(), f̈() are its first-order and second-
order derivative w.r.t. a(k−1)si [t], respectively. f(·) should be
minimized w.r.t. a(k)si [t] The optimal a(k)si [t] is [12]

a(k)si [t] = a(k−1)si [t]− ḟ (a
(k−1)
si [t])

f̈ (a
(k−1)
si [t])

(5)

If Σ
′(k−1)
si [t] = HΛHT , with Λ = diag(λn) denoting the di-

agonal matrix of the eigenvalues of the prior covariance matrix
at k − 1 and H ∈ Rn×n denoting the matrix whose columns
are the associated eigenvectors. Let M = HTΣ

′(k)
si [t]H.

Let also Λ̃ = diag(λ̃n) with λ̃n = (λn + ea
(k)
si

[t]d), bn
be the nth element of b = (MΛ̃−1 − I)HTµ

′(k−1)
si [t], and

ϕn = e
a
(k−1)
si

[t]
d

λn+e
a
(k−1)
si

[t]
d
. Eqs. (6) and (7) correspond to the

proposed approximation of first and second order derivatives
ḟ(asi [t− 1]) and f̈(asi [t− 1]), respectively, i.e.,

ḟ (a(k−1)
si [t]) = − 1

γd
(a(k)si [t]− a(k−1)

si [t]) +
1

2

∑
n

ϕn·

[(
1− b2n

λ̃n

)(
1 +

2Mnn

Mnn − λ̃n

)]
(6)

f̈ (a(k−1)
si [t]) =

1

γd
+

1

2

∑
n

ϕn(1− ϕn) +
1

2

∑
n

b2nϕn

λ̃n
·

[
1− 2(1− ϕn)

Mnn

Mnn − λ̃n

]
+
∑
n

ϕnbn
Mnn

Mnn − λ̃n
·[

1− ϕn
( Mnn

Mnn − λ̃n

)]
(7)

Unique drifts allow the respective stock latent vectors s
(k)
i [t]

to capture price volatility efficiently in every event. This
information is then attached to particle coefficient vector. A
formal proof can be found in [16].

C. Particle filtering

Let y
(k)
(r) [t] ∈ Rn, r = 1, ..., x denote the observation vector,

where the rth observation is its rth component, which is
computed for every t = 1, ..., d at event k. In order to estimate
a price in event k, the averages of x observation vectors
are computed. Let c(r)[t] ∈ Rn be a coefficient vector with
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components

c
(k)
(r)l[t] =

[
σ(k)

si,l
[t]
]2 ·[σ(k)

mj,l
[t]
]2 ·u(r)[t], l = 1, 2, . . . , n (8)

where
[
σ
(k)
si,l [t]

]2
,
[
σ
(k)
mj,l [t]

]2
are the lth diagonal elements of

the prior covariance matrices Σ
(k)
si [t],Σ

(k)
mj [t], respectively, and

u(r)[t] ∼ N
(
0, 1
)

[15]. The particles are generated according
to these coefficients, i.e.,

o
(k)
(r) [t] = o

(k−1)
(r) [t] + c

(k−1)
(r) [t], r = 1, . . . , x. (9)

Here, x particles are sampled from the importance distribution
p(o

(k)
(r) [t]|o

(k−1)
(r) [t]) [17]. This is the sequential importance

sampling (SIS) step. At event k and time step t = 1, . . . , d
the observation model of multiT-DPF is

y
(k)
(r) [t] = o

(k)
(r) [t] + c

(k)
(r) [t], r = 1, . . . , x. (10)

Then, systematic resampling is applied within % resampling
loops to prevent particle degeneracy [18]. Let

ρ
(k)
(r) =

(r − 1) + ρ̃

x
, ρ̃ ∼ U

(
0, 1
)

(11)

where ρ(k)(r) ∈
[
r−1
x , rx

)
. Then, particle weights are

δ
(k)
(r) [t] ∼ N

(
y(k−1)[t], v

(k)
(r) [t]

)
, r = 1, . . . , x (12)

with v
(k)
(r) [t] distributed as a truncated normal pdf

T N
(
ȳ
(k)
(r) [t], σ2

δ

)
, where ȳ

(k)
(r) [t] = 1

n1Tn×1y
(k)
(r) [t] is the

average value of the r elements of the observation
vector in Eq.(10). A threshold ϑ =

∑x
r=1 ψ̃

(k)
(r) ,

is defined, where ψ̃
(k)
(r) = ψ

(k)
(r)/

∑x
ξ=1 ψ

(ξ), and

ψ
(k)
(r) = exp

(
− δ(k)(r)/max

ξ
{|δ(ξ)|}

)
[11]. If ρ(k)(r) < ϑ a new

observation vector is generated according to (10), otherwise
the current y

(k)
(r) [t] is used. Then roughening is applied to

ensure observation vectors variance as y
(k)
(r) [t]← y

(k)
(r) [t]+κ[t],

where κ[t] ∼ N
(
0, σ2

κ I
)
. Finally, the estimation of d prices

for the event k and time steps t = 1, ..., d is given by
computing the average across x observation vectors and their
n components at every resampling loop as

ŷ(k)[t] =
1

n · x

n∑
l=1

x∑
r=1

y
(k)
(r)l[t] (13)

where y
(k)
(r)l[t] denotes the lth element of y

(k)
(r) [t]. Within a

current event k, d log drifts a
(k)
si , d prior and posterior

mean vectors µ
(k)
si and µ

′(k)
si , d prior and posterior covariance

matrices Σ
(k)
si and Σ

′(k)
si , x particle coefficient vectors are

computed for every t = 1, 2, . . . , d, based exclusively on the
d prices of the previous event k−1. Then, d price predictions
are computed for k + 1.

III. EXPERIMENTAL RESULTS

Experiments have demonstrated that the proposed multi-step
framework is efficient and it keeps the computational complex-
ity low. They are conducted on opening daily prices within
1961− 2018 from Coca-Cola, Pepsi, Novartis, Roche, Pfizer,

BP, Shell, and Posco stocks and the prediction performance
of multiT-DPF is compared to that of DPF [11] and to that
of the deep learning algorithms in [3], [4], [5]. multiT-DPF
is an online algorithm which predicts the d = 10 next prices
given the past 10 ones. Time steps corresponds to days. For the
deep learning algorithms 70% of data are used as training set
and 30% as test set. To ensure a fair comparison, multiT-DPF
is applied on the same test set and the prediction horizon is
d = 10, as well. DPF is applied on the same test set, as well.
Since DPF is a single-step prediction algorithm, only the dth
prediction is recorded. Thus, multiT-DPF and DPF predictions
are made comparable. The RMSE related to these predictions
is calculated. Here, the latent dimension is n = 5, the number
of particles is x = 20, the number of resampling loops is
% = 100, σ2

κ = 0.01, σ2
δ ∼ T N

(
0, 0.03

)
, σ2

ij = 0.01, the
additional drift parameter is γ = 8×10−3, and the initial drift
value of the Brownian motion of si is asi [t0] = −6.5. The
respective log drift parameter is fixed and common across all
segment vectors j, i.e., amj

[t] = −18.

Fig. 1: Historical Posco prices.

Fig. 2: Predicted Posco prices.
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TABLE I: Prediction performance comparison.

Stock RMSE (USD) number of prices Price Range (USD)multiT-DPF DPF [11] train / test [3] train / test [4] train / test [5] train/test
BP 0.8494 1.2736 1.6690 / 1.8103 2.5413 / 3.1994 2.1176 / 2.9491 7,361 / 3,154 27.25 - 147.125
Coca-Cola 0.0391 0.8066 0.8001 / 0.9794 1.1086 / 1.1317 1.4794 / 1.5188 9,990/4,281 28.875 - 155.75
Novartis 1.1246 1.8501 1.8791 / 1.9143 2.9644 / 3.4152 2.8732 / 3.0641 3,847 / 1,649 27.313 - 106.73
Pepsi 0.0895 0.8934 1.4229 / 1.5026 1.6132 / 1.7266 1.7067 / 1.8613 8,170 / 3,501 0.544 - 121.38
Pfizer 0.0621 1.0055 0.9709 / 1.2648 1.4174 / 1.5478 1.3279 / 1.4116 8,170 / 3,501 11.84 - 149.187
Posco 1.9089 2.5007 2.5976 / 2.9129 4.0122 / 5.5944 3.5084 / 3.8871 4,213 / 1,806 10.3750 - 42.3750
Roche 1.0022 1.4113 1.2699 / 1.4017 1.2938 / 1.3661 1.3144 / 1.4006 2,654 / 1,137 9.5313 - 38.6
Shell 3.0098 2.8209 2.7462 / 2.9316 2.9862 / 3.2684 3.1461 / 3.6806 2,316 / 992 36.75 - 88.09

Fig. 3: Zoom in 150 Posco prices.

Fig. 4: Zoom in 150 Pfizer prices.

Figures 1 and 2 illustrate the historical and predicted stock
prices of Posco, respectively. Figures 3 and 4 depict a zoom
in 150 prices of Posco and Pfizer, respectively. The green
vertical lines define the events of length d = 10 time steps. As
can be seen, multiT-DPF captures efficiently price evolution
within every event, without losing tracking through time. This
fact indicates that the prediction error is not propagated. The
overall prediction performance is summarized in Table I. The
root-mean-square error (RMSE) was utilized as figure of merit.
The first column refers to each stock, the second column refers
to the performance of the proposed multiT-DPF, the third
column indicates the performance of DPF [11], the fourth
column indicates the performance of [3], the fifth column
refers to the performance of [4], the sixth column summarizes

the performance of [5], the seventh column refers to the
number of train and test prices, and the price range of each
stock in USD is shown in the eighth column.
F -tests are applied to evaluate the statistical significance

of MSE differences. The F statistic is F1ι =
π2
1

π2
ι

, where the
subscript 1 refer to multiT-DPF and ι = 2, 3, 4, 5 refer to
DPF [11], [3], [4], and [5], respectively. For each method
π2 = 1

N−1
∑N
l=1(ŷl− ȳ)2 is defined, where ŷ is the predicted

price, ȳ = 1
N

∑N
l=1 ŷ is the mean of predicted prices, N is the

size of the test set appearing in Table I, and the significance
level of the F test is β = 5%. The null hypothesis between
multiT-DPF and every other method ι is H0 : π2

1 = π2
ι , which

is rejected if F1ι < Fβ/2 or F1ι > F1−β/2, where Fβ/2 =
F (β/2, N−1, N−1) and F1−β/2 = F (1−β/2, N−1, N−1)
are the critical values of the F distribution with significance
level equal to the subscript and N − 1 are the degrees of
freedom.

TABLE II: F-test multiT-DPF against the methods in [11], [3],
[4], and [5].

Stock Fβ/2 F1−β/2 F12 F13 F14 F15

BP 0.9431 1.0603 0.7016 0.6724 0.5102 0.5391
Coca-
Cola

0.9510 1.0516 0.1088 0.0967 0.0238 0.2089

Novartis 0.9221 1.0844 0.7208 0.7001 0.4122 0.3855
Pepsi 0.9459 1.0572 0.0901 0.0826 0.0693 0.0201
Pfizer 0.9459 1.0572 0.1055 0.0993 0.0621 0.0287
Posco 0.9255 1.0805 0.4394 0.4064 0.0589 0.1993
Roche 0.9070 1.1025 0.7402 0.7695 0.7008 0.7674
Shell 0.9007 1.1102 1.0105 1.0012 1.1941 0.9001

For Shell stock, every event exhibits major price variations,
i.e., sharp price jumps, with respect to the previous event.
Since multiT-DPF utilized only the information of the previous
event, it lost price tracking. multiT-DPF outperformed all
other methods in 7 out of 8 stocks. In these cases, the MSE
differences are statistical significant as can be seen in Table II.
Especially in case of BP, Coca-Cola, Pepsi, and Pfizer the
RMSE is remarkably better.

The coefficient of determination R2 ∈ [0, 1] measures how
well each model fits the data. The prediction performance is
assessed w.r.t. the coefficient of determination in Table III. The
findings concur with the assessment of statistical significance
of MSE differences.
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TABLE III: Coefficient of determination.

Stock R2

multiT-
DPF

DPF [11] [3] [4] [5]

BP 0.9615 0.9208 0.9193 0.8497 0.8561
Coca-
Cola

0.9950 0.9001 0.8944 0.8892 0.8843

Novartis 0.9466 0.9195 0.9207 0.8065 0.8171
Pepsi 0.9899 0.9199 0.9281 0.9190 0.9055
Pfizer 0.9815 0.9600 0.9575 0.9508 0.9599
Posco 0.9405 0.8595 0.8709 0.8411 0.8564
Roche 0.9841 0.9602 0.9660 0.9697 0.9657
Shell 0.9008 0.9197 0.9119 0.8998 0.8901

To examine the impact of the proposed approximation of
the Brownian log drift parameter, a comparison is conducted
between multiT-DPF using the proposed approximations and
multiT-DPF using the approximations proposed in [12]. Both
versions of the algorithm were tested on the whole price time
series. The results are summarized in Table IV.

TABLE IV: RMSE of multiT-DPF when the approximations
of Eqs. (6) and (7) are used against the RMSE of multiT-DPF
when approximations proposed in [12] are employed.

Stock RMSE (USD)
multiT-DPF us-
ing (6) and (7)

multiT-DPF with
approximations
proposed in [12]

Number
of prices

BP 0.7406 1.5694 10,515
Coca-
Cola

0.4807 1.6388 14,271

Novartis 1.0001 1.2615 5,496
Pepsi 0.9710 1.6141 11,671
Pfizer 0.5100 1.6276 11,671
Posco 1.8011 2.2491 6,019
Roche 1.1096 2.4954 3,791
Shell 3.0607 3.7095 3,308

As can be seen, multiT-DPF employing (6) and (7) performed
best. This fact indicates that the proposed approximation of
the Brownian log drift parameter plays a critical role in
the performance of multiT-DPF, enhancing the efficacy of
particle coefficients and the overall robustness of the filter.
The introduced multi-step framework along with the proposed
approximation for the log drift parameter led multiT-DPF
to capture consistently the chaotic behaviour of stock prices
through time.

IV. CONCLUSIONS

A multi-step ahead dyadic particle filter, namely multiT-
DPF has been proposed for stock price prediction. The in-
troduced Brownian log drift parameter empowers the latent
vectors to track closely the price evolution through time and
ensures high prediction performance. The multi-step frame-
work ensures computational feasibility and leads to efficient
price prediction despite the fact that the given information
lies 10 time steps back in the past. multiT-DPF performed
impressively better than the state-of-the-art methods in 7
out of 8 stocks. Experiments have shown that the proposed
approximation of the Brownian log drift parameter enhanced
strongly the performance of the particle filter.

The proposed multi-step ahead dyadic particle filter is an on-
line method, which relies on historical stock prices. External
information (e.g., user information) is not regarded, because
such information is scarce. By mining historical price time-
series, model simplicity is promoted, guaranteeing successful
price inference. However, the dyadic collaborative filtering can
accommodate users and stocks, if such data are available.

Furthermore, the proposed method can be tested for multi-
step ahead prediction of room rates at a destination across
hotels with the same stars as well as flight prices for a
destination across various passenger classes.
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