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Abstract—Human leg detection and tracking is a common
topic in autonomous driving and mobile robotics. When dealing
with heavy rain, fog or smoke, approaches based on vision and
laser are denied. Radar sensing can solve problems even in
the harshest environments. Many radar tracking methods are
based on measuring the human motion state by utilizing the
Doppler effect. However, in applications with pivoting sensors or
sensors with low bandwidth interfaces, this information may not
be available. This paper proposes a method to detect legs with
only geometric and intensity-based features and assesses tracking
methods to form a leg tracking system to be used in a wide range
of applications with special emphasis on emergency response and
firefighting.

Index Terms—radar, tracking, leg detection, robotics

I. INTRODUCTION

Firefighting and emergency response is demanding on the
human operator. Especially in firefighting scenarios, the at-
tack squad can only operate for a few minutes while using
respirators. Our effort is to allow mobile robots to support the
operators in a variety of rescue tasks. When dealing with fire
and smoke, conventional sensor principals will not produce
feasible data. In fact, most smoke or heavy weather scenarios
completely deny the usage of laser or vision-based systems.
Thus, in emergency response, alternative methods have to be
utilized.

Radar leg tracking is a less frequently researched field. Most
methods originate from (autonomous) driving and are con-
cerned with forecasting possible collisions with pedestrians.
Hence, the focus of these methods is more towards short-term
tracking, i.e. over short periods, where continuous tracking
is less important. When dealing with long-term tracking,
more laser or vision-based methods are used. Independent
of the time frame, trackers are always split into two main
operations: Detection and Tracking. Detection is concerned
with finding the desired object in the observed space, while
Tracking establishes a continuous temporal relation between
those objects. In general, first, possible objects are detected.
Secondly, objects are accepted or denied based on their spatial
relation and afterwards combined into leg pair objects. Finally,

the leg pairs are tracked to establish a semantic relation
between consecutive detections.

In this paper, we introduce a novel and comprehensive radar
leg tracking pipeline that is solely based on geometric and
intensity features. Thus, our method is also available in situa-
tions, where the radar sensor cannot compute or detect Doppler
shift, hence the relative velocity of its target objects. In this
paper, first, the related work is presented concentrating on the
two major concepts Detection and Tracking. Afterwards, our
pipeline is discussed and evaluated in divers scenarios, scoring
an accuracy of up to 79.18%.

A. Related Work: Leg Detection

In general, radar leg detection is based on motion detec-
tion using Doppler shift and Fourier transform techniques,
like spectogram analysis. Majer et al. [1] propose a system
for pedestrian detection, combining ultra-wideband radar and
laser. The method clusters legs based on the Euclidean relation
between radar scan points and rejects/accepts them according
to the laser detections. Afterwards, the clusters are classified
in a Decision Tree using seven distinct features. Zhao et
al. [2] propose to use Density-Based Spatial Clustering of
Applications with Noise (DBSCAN) to generate the point
clusters instead. In situations, where Doppler data is not
available, e.g. for pivoting radars or in applications with low
bandwidth interfaces, these methods are not usable.

If Doppler shift shall not be an inherit requirement, also
laser-based methods can be exploited. Laser sensing ap-
proaches fall in three categories based on their clustering
method: Blob Analysis [3]–[5], Distance Thresholding [6] and
Local Neighborhood Clustering [7]–[9]. Xavier et at. [7] define
a leg as a non-occluded circle with diameter between 0.1
and 0.25 m. Taipalus and Ahtiainen [8] define legs based on
data density, min./max. leg cross-section and circumferences.
Chung et al. [9] detect legs based on the cluster contour,
involving its width and depth. Arras, Mozos and Burgard
[10] propose a more sophisticated method for leg detection,
where the legs are characterized by eleven geometric (e.g.
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width, point count) and three motion features (e.g. mean
speed, jumping distance). AdaBoost is then used to classify
the legs. AdaBoost is a supervised learning technique based
on combining multiple weighted weak classifiers into a single
strong classifier. The leg detection method is referenced in
multiple works, e.g. [11], [12].

B. Related Work: Leg Tracking

Leg tracking is a challenging topic when the human motion
state cannot be measured directly but has to be estimated
in a state observer. For the estimation of the motion state
of the tracked person, mostly Bayesian filters are applied.
Common filters are Kalman Filter (KF), Extended Kalman
Filter (EKF) and Unscented Kalman Filter (UKF). KF is a
suitable model, when dealing with a Gaussian sensor model
and linear motion [13]. Saho [14] proposes to use position-
velocity-measured KF to improve the accuracy. However, the
abstraction in KF towards non-linear motion is still limited.
Zhai, Wu and Wang [15] propose to also model statistical
system and observation noise by adapting the noise parameters
to bring the model closer to the real-world. Linder et al.
[11] use an EKF instead. This filter overcomes the linearity
constraints of the KF with low complexity, but low precision
and slow convergence speed [15]. Meuter et al. [16] use an
UKF and demonstrate its real-time capabilities, while handling
non-linearity. Schubert, Richter and Wanielik [17] propose to
combine multiple motion models in the UKF to overcome
each model’s weaknesses. Linder et al. [11] compare trackers
based on their data association method, i.e. Greedy Nearest
Neighbor (GrNN), Simple Nearest Neighbor (SNN) and Multi-
Hypothesis Tracker (MHT), and observe that there is no single
method for all applications.

Leigh et al. [18] propose the laser-based leg tracker frame-
work1, which is open-access in the Robot Operating System
(ROS). They use a combination of Nearest Neighbor Cluster-
ing (NNC) with the Hungarian algorithm [19] and a Random
Forrest Classifier with 15 features for leg detection, based on
the works of Arras, Mozos and Burgard [10] and Lu and
Smart [20]. Afterwards, they generate tracks based on EKF
and Global Nearest Neighbor (GNN) data association with a
Mahalanobis gate (see Section II-C2).

II. RADAR LEG TRACKER

In this section, the proposed radar leg tracker is described.
The method is based on the approach by Leigh et al. [18].
The tracker should fulfill online time constraints. Hence, a pre-
processing step is introduced to shrink the data load. Further,
detection and tracker modules are presented.

A. Pre-Filtering

The main objective of the pre-filtering step is to reduce the
data load, while maintaining a certain informative value. In the
worst case, leg detections are filtered out before the tracking
even starts. The simplest filter is a distance filter, which deletes
far and close points but keeps all data in between. This is

1https://github.com/angusleigh/leg tracker

feasible as the regular distance for people following is 1-3 m.
A more sophisticated method is to, first, filter by distance, and
afterwards apply a threshold on the reflection intensity and
only keep those points that exceed the static threshold. In [21]
this approach is extended by Otsu Thresholding. The objective
of an Otsu Threshold is to split the data set into two groups
with maximal inter-class and minimal intra-class variance.
Hereby, the data table is annotated intensities over number
of points in each intensity class. Hill Climbing optimization is
used to find the corresponding threshold. The major benefit of
the dynamic threshold is that it can react to the surrounding
environment. With a static threshold, strong reflections nearby
may suppress other data points.

B. Radar Leg Detection

The leg detector consists of two steps: Clustering and Clas-
sification. Clustering is concerned with structuring the scan
into multiple objects. Afterwards, potential legs are identified
using the classification method.

1) Clustering: In this work, we compare and evaluate two
clustering algorithms (see Section III-A). In [18], NNC is used.
Points are clustered if their Euclidean distance to another point
in the cluster is below a threshold. The threshold is selected
in such a way that it can distinguish legs while generating no
more than two clusters per person. Later on, people tracks can
be initialized based on one or two clusters, so generating two
clusters is no mandatory requirement but simplifies the track
matching process.

For radar tracking Zhao et al. [2] propose to use DBSCAN.
In DBSCAN the cluster is grown from a core point. If a point
lies within a distance threshold to the core point, it is grouped
to the core cluster. Other points are labeled noise. DBSCAN is
an iterative scheme, where noise points can be post-clustered
later on when a core cluster is grown. The approach is more
complex but generates better clusters. However, if the clusters
have varying density, we observed a dependency on a suitable
set of parameters, which is supported by Schubert et al. [22].

2) Random Forest Classification: Once clusters have been
generated, legs can be detected. For detection, a Random
Forest Classifier is utilized. A Random Forest (RF) consists of
multiple Binary Trees (Decision Trees). The Binary Trees are
made from the same pool of features with varying sequence
using supervised learning. The majority vote in the RF decides
if a cluster is labeled a leg detection. The features in our RF
are based on, but extend (emphasized) the ones used by Leigh
et al. [18]. Geometric features are:

1. Number of points
2. Standard deviation
3. Mean average deviation

from median
4. Cluster width
5. Linearity
6. Circularity
7. Radius of best-fit circle
8. Boundary length
9. Boundary regularity

10. Mean curvature
11. Mean angular difference
12. Inscribed angular vari-

ance
13. Standard deviation of in-

scribed angle
14. Distance from sensor
15. Distance relative to num-

ber of points
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Fig. 1: Influence of all features on the leg decision

While these features are based on the geometric relations
in the cluster, a radar detection is further characterized by the
reflection intensities. Thus, we add intensity features. These
are based on, but extend the work of Majer et al. [1]:

16. Mean
17. Median
18. Standard deviation

19. Minimum
20. Maximum
21. Average on cluster hull

The influence of each feature on the leg decision is analyzed
and listed in Figure 1. Distance and cluster linearity have
the most impact on the decision. It is to be noted that the
training data only features ranges of up to 8 m, hence this
feature might be overfitted on the common distance in human
following applications.

C. Leg Tracker
The leg tracker consists of three sub-methods: Motion mod-

eling, data association and track management. First, motion
modeling is used to estimate the motion state of the leg object.
Afterwards, the legs are matched based on the motion state and
forwarded to the track management, which is concerned with
maintaining and deleting old/new tracks.

1) Motion Modeling: Motion prediction is commonly per-
formed with Bayesian filters. Within this class of filters,
KFs are often used in tracking applications. KFs use a two-
stage approach, where first the human motion is predicted
and afterwards updated based on the real-world observations,
i.e. sensor detections. The classic KF process is depicted in
Figure 2. KF models are assumed to be optimal, i.e. with white
noise and known noise covariance. For processes with high
level of noise, the update step can be exchanged by the Joseph
form [23]. This form can handle KFs that are not optimal. The
new update step is adapted to

Pk|k = (I−KkHk)Pk|k−1(I−KkHk)
T +KkRkK

T
k . (1)

In addition to the Joseph form, the Adaptive Sage-Husa
Kalman Filter (ASHKF) allows the noise to be modeled closer
to the real system [15]. In this variation the observation noise
is computed by

Rk = (1− dk)Rk−1 + dk(ỹkỹ
T
k −HkPk|k−1H

T
k ), (2)

with the fading memory index dk = (1− b)/(1− bk).

Fig. 2: Two-step approach in the classic KF with relevant math,
including system matrix F , process noise Q, measurement
noise R, innovation covariance S and observation matrix H

2) Data Association: Data association is concerned with
matching the projected track (from motion model) and the
incoming measurements to establish a continuous track. Before
matching the track, a gating procedure is applied to eliminate
outliers. Gating establishes a relation between the old track
and update candidates by applying a distance threshold. In
this case, the Mahalanobis distance metric dm is used, given
by

dm(x1,x2) =
√

(x1 − x2)TS−1(x1 − x2), (3)

where xi is a data point and S the covariance matrix. The
covariance is the distribution of a data set, but can cover
more elaborate characteristics like noise, if required. In an
experimental study, the gate is set to dm = 1.3 m.

For track-to-detection matching, GrNN is used. Nearest
Neighbor methods find the best match based on neighbor-
hood relations. First, the Mahalanobis distances between all
detections and tracks are mapped in the association distance
matrix. By applying the gate, some relations are rejected. From
the matrix a Bipartite Graph is generated. The transition costs
are based on the mapped Mahalanobis distances. The data
association problem is then solved by selecting the smallest
distances (greedy) until all detections are matched. Unassigned
tracks are either categorized as lost or new depending on the
prior state. GrNN is feasible in problems with few possible
combinations [24], which can be assumed for people tracking.
In more complex problems, GrNN may converge to non-
optimal results. In this case data association may be shifted to
GNN utilizing the Hungarian algorithm [19] instead.

3) Track Management: Track management is concerned
with initializing, maintaining and deleting tracks. Some of the
associated matches need to be confirmed. To initialize a track,
the person has to be seen in eight consecutive scans (after
initially being detected) with a covered average distance of 5-
18 cm per frame. In case of a static sensor, the thresholds can
be relaxed. To avoid a person being represented by multiple
tracks, the method proposed by Leigh et al. [18] is used. Here,
a person track can be matched with up to two detections. In
this cas,e the track is updated with the mean position of the
single leg detections.
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In our tracker, a track is deleted in following cases:
i. Track confirmed < 10 frames, track rejected > 10 frames

ii. Track not confirmed > 40 frames
iii. Track confirmed > 10 frames,

covered distance < 5 cm per frame (mean)
iv. Covered distance < 5 cm for > 15 frames
v. Covered distance between two frames > 0.5 m
Old tracks (track confirmed > 50 times) are only considered

for deletion, if the track was rejected more than 15 times
and traveled less than 5 cm for more than ten frames. The
parameters were determined and validated in the training
scenarios presented below.

III. VALIDATION

The system is validated in indoor (A, B, C) and outdoor (D,
E) scenarios over varying time periods. The robot used is a
Robotnik Summit XL-Steel equipped with an indurad iSDR-
C pivotal radar sensor. The sensor outputs five 360°-scans per
second and operates within a range of 72 - 82 GHz. Tests are
performed in five environments (see Figure 3):
A. Large office room with tables and chairs
B. Lab with many reflective objects
C. Wide corridor with low noise
D. Walkway between two buildings, controlled disturbances
E. Walkway along a street, uncontrolled disturbances

A. Detection

The leg detection is validated with the confusion matrix.
Here, the expected output is compared with the leg detec-
tion and classified as True Positives (TP; leg expected and
detected), True Negatives (TN; no leg expected and none
detected) or their inversions (FP: False Positives, FN: False
Negatives). From these classes, four scores are computed:

Accuracy Ac =
TP + TN

TP + TN + FP + FN
(4a)

Precision Pr =
TP

TP + FP
(4b)

Recall Re =
TP

TP + FN
(4c)

F1-Score F1 =
2 ∗Re ∗ Pr

Re+ Pr
(4d)

The leg detector is trained with 4464 positive and 2195
negative examples. Positive examples originate from a single
person moving freely and continuous in front of the sensor.
Negative examples are arbitrary clusters from the environment.
The training sets are generated in environments A and B and
cover five different people (male and female). For testing,
two test sets are made with 155 frames each. One covers a
known, another a known and an unknown person. Both sets are
generated in environment B. The results are listed in Table I.
While the combination DBSCAN and distance filter offers the
best overall score, it is unable to be run in real time. Thus,
the combination NNC and Otsu filter is used, which offers
a high score with low computational complexity. The NNC
is parameterized with a distance threshold of 0.45 m and a

TABLE I: Comparison of clustering and filter combinations

Cluster Filter Ac Pr Re F1 Cycle
DBCSAN Otsu 94.9% 57.4% 62.9% 60.0% 106.0 ms
DBSCAN Dist. 97.1% 75.6% 75.1% 75.3% 857.1 ms

NNC Otsu 97.8% 68.3% 75.8% 71.9% 45.1 ms
NNC Dist. 94.8% 34.9% 73.3% 47.3% 154.4 ms

TABLE II: Comparison of ASHKF combinations with differ-
ent data association algorithms and gates

Data Association Gate FP MIS ID MOTA
Global NN Euclidean 43 56 2 73.97%

Mahalanobis 10 170 8 75.33%
Greedy NN Euclidean 42 58 2 73.71%

Mahalanobis 13 59 1 81.19%

minimal cluster size of five points. The feature importance
analysis in Figure 1 is generated using this exact combination.

B. Tracking

For tracking validation, the Multi Object Tracking Accuracy
(MOTA) measure is used, which is computed by

MOTA = 1−
∑

k(MISk − FPk + IDk)∑
k GTk

. (5)

Here, MIS is the number of misses, i.e. mismatch between
track and detection, and ID is the number of ID switches,
i.e. when a track is mistakenly assigned a new ID. GT is the
ground truth.

The tracking performance using the ASHKF is validated in
environments B and C with multiple people and a static sensor.
The results are listed in Table II. For comparison, also GNN
and both gating methods - Euclidean and Mahalanobis - are
tested. The proposed combination of GrNN and Mahalanobis
gate shows the best MOTA score and fewest ID switches.

C. Full System

The full system is evaluated in two test cases. In test case I
(environment D), the robot is stationary and two people move
around it, crossing the FOV of the sensor. This is a long-
term test, spanning over 10 min. The conditions are controlled.
Test case II is as close to a real-world scenario as possible.
In this case, the robot is following a single person (manually
controlled) in environments D and E. In environment E the
conditions are uncontrolled with people arbitrarily passing
by. The results of the two test cases are listed in Table III.
The system shows a good reliability in all test cases. In
environment D, lamp posts along the walkway induce many
FP, due to their leg-like shape. This has a significant impact
on the MOTA scores in test cases I and II-D. It is to be noted,
that the system maintains the same ID for the target person
and never looses her track in test case II.

Further, the impact of multiple people on the system is
evaluated. The test is performed under the conditions of test
case I. The results are listed in Table IV. It is observed,
that the MOTA is lowered the more people are tracked,
while the impact on run time is minimal. Similar scores in
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Fig. 3: Environments used in the validation (from left: A to E)

TABLE III: Evaluation of the full system in the two test cases

Test Case Environment Scans FP MIS ID MOTA
I D 6010 402 1275 27 71.65%
II D 836 165 104 0 68.75%
II E 1047 94 124 0 79.18%

TABLE IV: Impact of people count on system performance

People Count Scans FP MIS ID MOTA Cycle
2 650 93 225 3 75.31% 39.89ms
3 655 57 617 9 65.24% 34.11ms
4 660 56 917 13 62.65% 36.44ms
5 659 424 990 34 56.05% 45.03ms
6 657 351 1357 38 55.71% 47.31ms

cases with four and five people indicate that the MOTA may
eventually reach a plateau. In addition, comparing test case I
and the test case with two people, the tracking period may
have an impact on the performance (loss of 4%). However,
the system exceeds the results by Leigh et al. [18] and is
comparable to the results by Linder et al. [11], who apply the
MOTA score on laser tracking. This indicates that the proposed
radar tracker is at least on par with typical laser leg tracker
applications. Comparison to radar trackers is difficult as most
utilize Doppler shift to measure the motion state.

IV. CONCLUSION

This paper proposes a radar-based approach for human leg
detection and people tracking using just geometric and inten-
sity features, estimating the motion state instead of measuring.
Leg detection is based on a combination of a Random Forest
Classifier with 21 features and Nearest Neighbor Clustering
with an Otsu filter. The tracker is based on the Adaptive
Sage-Huse Kalman Filter combined with Greedy Nearest
Neighbor data association and a Mahalanobis gate. The system
is evaluated in five environments with varying recording time.
The overall score indicates good usability in people following
and for stationary tracking systems in outdoor and indoor
applications. In future research, the tracking system shall be
tested in a firefighting scenario under real conditions.
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