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Abstract—Many unsupervised and supervised dimension re-
duction techniques are available for visualization and interpreta-
tion of high-dimensional data for classification tasks. While the
unsupervised techniques do not employ the class information at
all, most supervised algorithms are blind to the order of classes
in ordinal classification problems. In this paper, we propose a
novel and intuitive dimension reduction technique specifically
designed for visualization of high-dimensional features in ordinal
classification tasks. The technique is an iterative process, where at
each iteration a search is conducted in the high-dimensional space
to find the viewpoint from which the centers of adjacent classes
are seen most distant from each other. The data is then projected
to the lower dimensional space defined by the optimum viewpoint.
The iteration is terminated when the desired dimensionality
is achieved. Experimental results on various ordinal datasets
demonstrate that our technique can be used as a complementary
tool to the classical dimensionality reduction methods.

Index Terms—ordinal classification, dimensionality reduction,
data visualization, interpretability

I. INTRODUCTION

Ordinal classification refers to the classification problems
where there is a natural order between categories [1]. Ex-
amples to ordinal classification are ranking the severity of a
disease [2], prediction of movie preferences [3] or classifica-
tion of images involving ordinal quantities [4]. The categories
are usually represented with one-dimensional discrete values
following their inherent order. It is expected that the features
used to predict the ordinal categories of the instances also
possess an intrinsic order in the high-dimensional space. In
order to visualize and assess whether these features follow the
ordinality of the categories, dimensionality reduction can be
used.

Many dimensionality reduction techniques are available to
transform the high-dimensional data into a low-dimensional
space for interpretation of the prediction model. Principal
component analysis (PCA) is the leading choice. Other unsu-
pervised techniques include multidimensional scaling (MDS)
[5], Isomap [6], non-negative matrix factorization (NMF) [7]
and t-distributed stochastic neighbor embedding (t-SNE) [8].
When class information of the training data is available,
supervised techniques such as Linear Discriminant Analysis
(LDA) [9], Kernel Discriminant Analysis (KDA) [10], [11],
or Locality Sensitive Discriminant Analysis (LSDA) [12] are
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(a) 3D input data (b) View sphere (c) Projected data

Fig. 1: Ordinal classification problem. The original data is
shown in (a). The class centers are enclosed with black circles.
The segments joining the class centers are in black color.
The objective is to find the optimum viewpoint on the view
sphere (b) such that the adjacent class centers are seen as
apart as possible. The colors on the sphere are indicative of
the objective function defined in 2. The 2D visualization (c)
of the data is obtained through projecting the data to the plane
defined by the optimum viewpoint.

more effective in retaining meaningful properties of the data
that predict the categories. Although these techniques can
be very useful, they do not incorporate the ordinal structure
of the categories into their original formulation for ordinal
classification problems.

There is very few work on dimensionality reduction spe-
cific to ordinal classification. A variant of Kernel Discrimant
Analysis has been proposed [13] to find the projection that
simultaneously result in a high separation between classes and
maintain the class order. In [14], a supervised method based on
sufficient dimension reductions (SDR) is developed to regress
the response of underlying Gaussian latent variables to ordered
categorical variables. However, this method is more suitable
for dimension reduction in regression problems for predictor
selection and better prediction rather than visualization of the
available features.

In this paper, we propose an intuitive dimensionality re-
duction technique, which we call Best-view Projection (BVP),
for ordinal classification without imposing a regression model.
The main motivation is to propose a complementary tool
to the classical dimensionality reduction techniques, which
fail for special configurations of data distribution in ordinal
classification tasks. We formulate our approach as finding
the best viewpoint in the feature space such that the viewer
can ”see” the direction of ordinality as clearly as possible.
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Inspired by the work for human skeleton visualization in
[15], we determine the optimal viewpoint via maximization
of the squared distances between centers of adjacent classes
in the projected space. The dimensionality is reduced by one
(i.e. from N to N − 1) by projecting the features to the
lower dimensional space defined by the optimum viewpoint.
The process is repeated until the desired dimensionality is
achieved. A major advantage of our method is that it does not
require any parameters to be tuned. We provide a comparison
of our BVP method with a number of classical dimensionality
reduction techniques on simulated and real ordinal datasets.

II. METHOD

Let us consider an ordinal classification problem illustrated
in Fig. 1, where the features are in 3D space and the categories
are ordered. We would like to find a viewpoint on the view
sphere such that when viewed from that point the adjacent
class centers seem as apart as possible from each other. Our
BVP method finds the optimum viewpoint that maximizes the
projected square distances between adjacent class centers and
projects the data points to the space defined by the optimum
viewpoint.

To generalize the problem for N -dimensional space, let us
first suppose that we have K classes, ordered and identified
as k = 1, 2, ...,K. A class l is adjacent to class k if l = k− 1
or l = k + 1. The instances of class k are represented as
N -dimensional column vectors denoted as xki ∈ RN , with
i = 1, 2, ..., Ik, where Ik is the number of instances in
class k. The class centers are denoted as ck corresponding
to the arithmetic mean of the instances in class k. For the
sake of simplifying the equation of the view sphere, the
data is translated beforehand such that the origin of the N -
dimensional space corresponds to 1

K

∑K
k=1 ck, i.e. the mean

of the class centers.
Let us define the n-sphere (n = N−1) in the N -dimensional

space as S = {v ∈ RN : ‖v‖ = 1}. Given a viewpoint v ∈ S,
we can define an orthogonal projection P : RN → RN , whose
N − 1 columns are defined by the vectors orthonormal to v,
and whose last column is equal to v. Then, a point x ∈ RN

can be projected to the N −1-dimensional space defined by v
by computing y = Px and dropping the last component of y.
This point, x̄(v) ∈ RN−1 can be interpreted as point x as seen
from the viewpoint v. Its component parallel to v is invisible
to the viewer.

Our objective is to find the viewpoint v* on the n-sphere
such that the sum of the squared distances between the centers
of the adjacent classes is maximized. If we define c̄k(v) ∈
RN−1 to be the projected center of class k in the N − 1-
dimensional space defined by viewpoint v, we search for v*
maximizing

G(v) =

K−1∑
k=1

‖c̄k+1(v)− c̄k(v)‖2 (1)

Algorithm 1: Find the optimum viewpoint
Data: Class centers: ck, k = 1, 2, ...,K
Result: Optimum viewpoint: v*
Initialize v0 randomly such that ‖v0‖ = 1;
MaxIter = 100; ε = 10−5; γ0 = 0.05 ; j = 0 ;
while j < Maxiter do

Calculate ∇F (vj) using 5 and 6;
if j > 0 then

Calculate γj using 7;
end
v̂j = vj − γj∇F (vj);
vj+1 =

v̂j
‖v̂j‖ ;

if cos−1(vTj+1vj) < ε then
v* = vj+1;
break;

end
j ← j + 1

end

subject to the constraint ‖v‖ = 1. Maximizing G(v) is
equivalent to solving the following minimization problem:

Minimize F (v) =

K−1∑
k=1

[vT (ck+1 − ck)]2subject to ‖v‖ = 1

(2)
This is an optimization problem where the search space

is constrained to a smooth Riemannian manifold. We use
gradient descent together with the retraction formulation for a
spherical manifold in [16] to find v*. The procedure is given
in Algorithm 1. We randomly pick a viewpoint v0 on S for
initialization and update it as:

vj+1 = Retrvj (ηj) (3)

ηj = −γj∇F (vj) (4)

The gradient of F (v) is equal to:

∇F (v) = 2ATAv (5)

A =


(c2 − c1)T

(c3 − c2)T

...
(cK − cK−1)T

 (6)

We update step size γj according to the formula [17]:

γj =

∣∣(vj − vj−1)T |∇F (vj)−∇F (vj−1)|
∣∣

‖∇F (vj)−∇F (vj−1)‖2
(7)

The retraction for the sphere can be chosen as [16]:

Retrv(η) =
v + η

‖v + η‖
(8)

The iteration is stopped when the angle between vj and vj+1

is smaller than ε, and the optimum viewpoint v* is set to be
equal to vj+1. For all experiments, ε is set to 10−5.
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(a) 3D input data (b) 3D input data (c) BVP (d) PCA

(e) MDS (f) t-SNE (g) LDA (h) KDA (i) LSDA

Fig. 2: Proposed best view point (BVP) algorithm in action with ordinal datasets by comparison with other classical
dimensionality reduction techniques. Panels (a) and (b) are two views of the synthetic 3D ordinal data set. Panels (c) to
(i) show results of dimensionality reduction from 3D to 2D. The black circles with numbers correspond to class labels.

The cluster centers are then projected to the N − 1-
dimensional space defined by v*. The whole procedure is
repeated until the desired dimensionality is achieved.

III. RESULTS

Since we present our dimensionality reduction method
as a complementary visualization tool for ordinal datasets
rather than reducing the dimension of inputs of classification
techniques, we provide visual results only. We compare the
best-view projection method with three unsupervised methods
(1) PCA, 2) MDS, 3) T-SNE) and three supervised methods
( 4) LDA, 5) KDA, 6) LSDA ). The comparison is based
on: 1) whether the classes are well-separated, 2) whether the
ordinality between classes is preserved, and 3) whether the
distribution of the data is informative in the low-dimensional
space. First, we present results with simulated data where the
dimensionality is reduced from 3 to 2. Then, we provide com-
parisons with real ordinal datasets of higher initial dimensions.

A. Simulated Data

We created two 3-dimensional ordinal datasets and em-
ployed our best-view projection method and other six algo-
rithms to reduce the dimensionality to 2. Fig. 2a and 2b
show the first dataset, where there are five ordinal classes and
the within class distribution is Gaussian. 100 instances were
generated for each class. The class labels are given in Fig.
2a. In this example, the direction of ordinality in the original
space is not aligned with the principal axes of variation of
the whole data; hence PCA fails to appropriately reduce the
dimensionality as seen in Fig. 2d. MDS tries to place data

points into 2D space such that the pairwise distances are
preserved as much as possible. It does not take into account the
class labels, and it fails when the instances of adjacent classes
are close to each other in the original space (Fig. 2e). In t-SNE,
local neighborhood of points are embedded to capture the local
structure of the data together with clusters at several scales. We
experimented throughly with varying the perplexity parameter,
which is a measure of the effective number of neighbors used
in the algorithm. We give the best result, with perplexity 40, in
Fig. 2f. Although, t-SNE manages to group together samples
of the same class in local clusters, the global ordinality present
in the data is lost in the resulting 2D space.

Notice that PCA, MDS and t-SNE are unsupervised tech-
niques, which are great for revealing important global or
local structure of data. However, the class distribution is not
necessarily aligned with that structure in many cases, as in
this example. The supervised techniques, LDA (Fig. 2g) and
LSDA (Fig. 2i) are able to reduce the dimensionality to 2 with
good class separation while preserving the ordinality. Our BVP
algorithm performs very similarly to LDA and LSDA (Fig. 2c).
What it does is essentially to rotate of the 3D data given in Fig.
2a until it finds the best view that separates the adjacent cluster
centers as well as possible. For KDA, we used a Gaussian
kernel and set the regularization parameter to 0.1. KDA, a
supervised technique, compressed the instances of each class
to a small local region in the 2D space through class-based
Gaussian kernels for this particular case (Fig. 2h). Although
the classes seem well-separated, the ordinality relationship
is lost and the within class distribution of the data is not
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observable in the new space.
The second simulated dataset is shown in Fig. 3a and Fig.

3b. Instances of each class belong to a 3D partial swiss roll.
200 instances were generated for each class. The classes are
separated by an offset in 3D in accordance to their ordinality.
Similar to the first dataset, PCA is not effective (Fig. 3d)
since the principal axis of global data distribution is not
aligned with the direction of ordinality. MDA is successful
in this case Fig. (3e) due to the fact that there is greater
separation between instances from different classes in the
original space as compared to the first dataset. For t-SNE,
the best configuration was obtained with perplexity 30. In
accordance with its objective, t-SNE gathered the data in
local clusters in the 2D space, preserving the separability and
ordinality to some degree Fig. 3f; however, the global nature
of the data is not observable.

For this dataset, we observe that LDA failed to reduce
the dimensionality properly (Fig. 3g). LDA searches for a
projection that minimizes the distances of instances of each
class to its center, and in this case, the class centers are located
closer to the instances of adjacent classes in the original space.
The result is a 2D configuration where the class separation is
lost. Our BVP method does well in this case (Fig. 3c) as does
LSDA (Fig. 3c), projecting the data such that the separation
and ordinality between classes are preserved together with an
informative distribution in the reduced space. KDA does not
reveal such global information (Fig. 3g).

B. Real Ordinal Data

We tested our dimensionality reduction technique on real
ordinal classification datasets [18], [19]. Due to lack of space,
we only give visual comparisons with the two supervised
techniques; LDA and LSDA. The datasets and their properties
are given in Table I.

TABLE I: Real ordinal datasets used for the experiments [18],
[19] (I is the total number of instances, Q is the dimensionality
of the original data and K is the number of classes).

Dataset I Q K Class Distribution
contact-lenses 24 6 3 (15,5,4)
pasture 36 25 3 (12,12,12)
squash-stored 52 51 3 (23,21,8)
newthyroid 215 5 3 (30,150,35)
car 1728 21 4 (1210,384,69,65)
bondrate 57 37 5 (6,33,12,5,1)

Figs. 4 through 9 show the dimensionality reduction results
obtained by BVP in comparison to LDA and LSDA. For
all cases, BVP was able to provide a glimpse of the data
distribution and relative relations of the classes with respect
to each other. LDA showed good performance in some cases
(Figs. 4b and 7b). In the other cases, LDA pulled the instances
close to the class centers, causing loss of information on within
class distribution. Not originally designed for dimensionality

reduction for visualization, LSDA did not retain class sepa-
rability in 2 dimensions for the real datasets, except for the
dataset newthyroid (Fig. 7c). These results demonstrate that
for many ordinal datasets, classical dimensionality reduction
techniques may fail to provide a proper visualization of the
high-dimensional features, and our method can be used as
an alternative tool to map high-dimensional data to 2D for
interpretation.

IV. CONCLUSION

The paper presents a new and intuitive technique for the vi-
sualization of high-dimensional data for ordinal classification.
We provided visual comparisons with various dimensionality
reduction techniques on both simulated and real datasets
and demonstrated that our technique is capable of retaining
separability and class order in cases where the other tech-
niques failed. This visualisation step is important for ordinal
classification to guaranty that the latent space, on which a final
classification is to be performed by a machine, is interpretable
to a human eye [20]. As future work, the objective function
can be extended to involve the pairwise distances of instances
of adjacent classes. Another direction is to use this technique
to find the optimum dimension to provide input to ordinal
classification methods.
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