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Abstract—Modeling the dynamics of the induction motor is
a crucial problem because induction motors are used widely in
several scenarios. However, it is difficult to model the dynamics
of the induction motor precisely, because the induction motor
system is modeled as the complicated high order non-linear
differential equation. To address this problem, we propose a novel
residual grid network. The proposed grid connection effectively
merges the various levels of feature information. Moreover, previ-
ous methods are usually based on complex network architecture
with a mass of parameters. It may be infeasible for deploying this
application on edge devices in real-world scenarios. Therefore,
in the proposed method, we introduce the lightweight strategy
with grid connection to reduce the number of parameters.
Experimental results show that the proposed network contains
fewer parameters but outperforms other existing models and
achieves state-of-the-art performance on both simulated and real-
world motor data.

Index Terms—Motor dynamics, Residual blocks, Grid connec-
tion, Lightweight model

I. INTRODUCTION

Modeling the dynamics of the induction motor is a crucial
problem because induction motors have a wide range of
applications. For example, electrical motors are used from
more than 108 W in power plants to 10−6 W in electronic
watches. Additionally, they cover a wide range of speed >
105 RPMs in centrifuge applications and torque > 107 Nm in
mills [1]. For these services, it is required to understand the
dynamical physical model of induction motors. The induction
motor and its equivalent circuit are illustrated in Fig. 1 (a) and
Fig. 1 (b). The inputs are voltages Vd, Vq , and rotor speed ω;
outputs are currents Id, Iq , and torque τ , as plotted in Fig.
1 (c) and Fig. 1 (d). The dynamical model of the induction
motor is expressed:

[Id, Iq, τ ] = F (t, Vd, Vq, ω) (1)

where F is the function of the induction motor model. The
indices d and q denote three-phase quantities represented in
a two-phase orthogonal rotating reference frame [4], and t

(a) (b)

(c) (d)

Fig. 1. The induction motor and its physical quantities
¯

: (a) The induction
motor. (b) The equivalent circuit and corresponding physical quantities [1].
(c) The inputs are Vd, Vq and ω. (d) The outputs are Id, Iq and τ . It is noted
that all data are normalized between (-1, 1).

means that the model is time-variant. According to [5], it is
difficult to accurately model the dynamics of the induction
motor because the induction motor system F is represented
as the fifth-order nonlinear state-space model and some elec-
trical parameters in the induction motor like resistances and
inductances vary frequently with temperature.

Recently, deep neural networks have obtained remarkable
success in many applications like image processing [6]–[11],
computational photography [12], [13], and complex physical
simulation [14]. The classical encoder-decoder model [3], [15]
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(a) (b) (c)

Fig. 2. Illustration of convolutional encoder-decoder networks. (a) Wave U-net [2]. (b) Wave U-net with recurrent skip connection [3]. (c) Proposed residual
grid network. Different form (a) and (b), we integrate cross scale aggregation (blue arrows).

can be used to model the induction motor dynamics. Re-
cent researches indicate that the convolutional neural network
(CNN) architecture is more competitive than recurrent neural
networks [16] (RNNs) and gated recurrent units (GRUs) [15]
on many time series tasks. Furthermore, CNNs provide advan-
tages of computational efficiency and modeling effectiveness
due to the inherent parallelism [17]. Therefore, in this paper,
we select the CNN architecture model as the backbone.

For the CNN based encoder-decoder models, they con-
catenate the stacks of convolution to extract different scale
features and decode features to the output signal. The Wave
U-net [2] utilizes skip connection to combine the identical
size feature maps and reconstruct accurate signals. Recently,
in [3], RNN layers are introduced to replace skip connections
and extract temporal information. Furthermore, diagonalized
recurrent skip connections are proposed to diagonalize weights
in the RNN to decreases the number of parameters.

Although the previous methods can generate desired results,
there still some issues which may degrade the performance and
cause limitations in real-world scenarios. First, those models
cannot fuse the features in different levels effectively, which
may cause unsatisfactory predicting results. Second, previous
methods [3], [17] usually consist of mass parameters, which
may cause the infeasibility for deploying on edge device to
monitor various electro-mechanical devices in real-time. To
address the aforementioned problems, we propose a novel
lightweight residual grid network which is shown in Fig.
2(c). The proposed model densely concatenates vertical and
horizontal features in different scales. In addition, we leverage
the residual grid units to substitute the vanilla convolutional
units in the network because residual blocks improve gradient
flow during the back-propagation, and prevents the exploding
gradient problem [18]. With the effective and efficient fea-
ture extraction mechanism in the proposed architecture, our
method can achieve better performance but with less usage of
parameters.

We summarize the contributions in this paper as follows:

1) A novel end-to-end lightweight residual grid network
(LRG-net) with grid topology is proposed. This architec-
ture can aggregate different scale features for estimating
the induction motor dynamics effectively.

2) Several experiments on simulated and real-world data
show that the proposed method can achieve much better
performance than previous methods.

3) With the lightweight network design, the proposed
model can at least save 64% of parameters but achieve
the comparable performance compared with other meth-
ods. The proposed lightweight model is suitable for
monitoring the status of motors in the real-world sce-
nario.

II. METHODOLOGY

To design the lightweight models, many methods [19],
[20] are proposed to adopt fewer parameters to approxi-
mate the vanilla convolutions. Furthermore others tasks adopt
neural architecture search [21] to construct the lightweight
model. Though these methods can mine efficient networks,
their specific kernels are more difficult to be transformed
into compatible models for edge devices than conventional
convolutions [22] due to hardware limitation. On the other
hands, other methods adopt the vanilla convolutions with
the efficient feature fusion [23]–[25] to improve performance
with fewer model parameters. For example, DenseNet [24]
introduces direct connections between any two layers with
the same feature-map size to improve the accuracy and save
model parameters. Motivated by it, we propose the novel
grid structure network that improves the feature propagation
and reduces the number of parameters. In this section, We
first describe the proposed LRG-net, and then provide model
complexity analysis and loss function.

A. Residual Grid Network
The proposed LRG-net subsumes a backbone and two

simple 1-D convolutional kernels for pre-processing and post-
processing. The kernel size of all convolutions in our paper
is set as 3. The pre-processing convolution Ci generates 32-
channel feature maps from a given input motor signal and the
post-processing convolution Co transforms the feature maps
into the final motor signal. The topology of the backbone is a
grid of convolutional units, as shown in Fig. 3. In this paper,
we choose a grid network with three rows and five columns,
and it contains nine convolutional units. This model is divided
into the encoder part (blue rectangle) and the decoder part
(pink rectangle). The location of each convolutional unit in the
network, Cmn, is specified by a height and length coordinate
(m, n). The following notations are employed to describe in
which section of the grid convolutional unit exists:

Cmn =

{
Cen, m ≤ 3
Cde, otherwise

(2)
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Fig. 3. The proposed lightweight residual grid network. Brown and green blocks are 1-D convolution and residual grid units.

where Cen and Cde means the encoder and decoder convolu-
tion units, respectively. Moreover, the xmn, and ymn denote
the input and the output of the Cmn. We develop two kinds
of grid connection to fuse the different scale convolutional
units in encoder and decoder parts. In the encoder part, feature
maps from the upper row are passed to the lower convolution
units. Those top-down pathways effectively combine multi-
scale features. For the decoder part, lower feature maps are
passed to the upper convolutional unit. Those bottom-up paths
are augmented to make low-layer information easier to be
propagated. The formula of grid connection in the proposed
network is expressed:

xenmn =

 x11, m = n = 1
y(m−1)n, m 6= 1, n = 1
concat[ (y(m−1)n, ym(n−1) ], otherwise

(3)

xdemn = concat[ y(m−1)n, y(m−1)(n+1) ] (4)

where concat is the concatenation operation. It is noted that
both bottom-up and top-down pathways in our model fuse
cross-scale features, which can learn the high order non-linear
mapping for modeling motor dynamics [26].

To increase the accuracy and robustness, the convolutional
units Cmn called residual grid unit is used in the LRG-
net. This unit consists of a convolutional layer (Conv) and
followed by three repeated residual layers [18]. Comparing
to the conventional CNN, residual layers are intelligently
learned residual functions with reference to layer inputs. This
reformulation makes the training process effective, especially
in the event of deeper networks [18]. The final output is a
summation of two convolutions and it can be expressed as:

ymn = Cmn ⊗ xmn

= f(f(f(Conv(xmn)))) + xmn

(5)

where ⊗ is the convolution operator, and f is the function of
the residual layer. The illustration of the residual grid unit is
depicted in Fig. 4.

B. Analysis of the Lightweight Model

Efficient grid connection encourages us to adjust a number
of convolution channel for fewer model parameters. To strike

Fig. 4. The overall residual grid unit in the LRG-net. This unit contains one
convolution layer and three residual layers.

TABLE I
THE COMPONENTS AND DETAIL OF THE LRG-NET.

Layers Components Input Size Output Size
Ci Conv 100× 3 100× 32
Cmn Conv →3 ×(Conv →ReLU→ Conv) 100× 32 or 64 100× 32
Co Conv 100× 32 100× 3

Params 228348

a balance between the accuracy and the model complexity,
we set the number of feature maps at all convolutions to
32. We find that in spite of increasing the number of feature
maps, the LRG-net does not achieve significant improvement.
According to [20], the authors indicate the redundancy in
feature maps is an essential characteristic for those successful
CNN-based methods but increases both model parameters and
computational cost. Moreover, unlike high-level time series
analysis tasks, such as sleeping staging and trading forecast,
modeling motor dynamics does not require complex and
high dimensional features. Therefore, with grid connection
to extract multi-scale features, reducing the channel in the
convolutions is feasible to design a lightweight model. Overall,
details of LRG-Net are shown in Table I. The input dimen-
sion of Cmn is 100 × 64 if input tensors are concatenated.
Otherwise, the input dimension is 100× 32.

C. Loss Function

To train our LRG-net, the Charbonnier loss [27] is applied
and expressed as:

LCha(x, x̂) =
1

T

T∑
i

√
(xi − x̂i)2 + ε2 (6)

where x means the predicted signal, x̂ means the ground
truth signal, and ε is a small constant (e.g., 10−3). Instead
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of minimizing the mean square errors, this loss function is
robust to handle outliers and more stable during training. It is
noted when ε is 0, Eq.(6) is equivalent to L1 loss.

III. EXPERIMENTAL RESULTS

A. Datasets and Training Details

We train and evaluate the proposed network on the simu-
lated and the real-world induction motor signal collected in
[3]. The simulated dataset generated by Simulink [4] consists
of simulations performed by the control law described in
[5] and covers a wide range of operating conditions for
generalization. The real-world dataset is recorded from a 4-
kilowatt induction motor. Data from 10 different operating
conditions are collected. The sampling rates of both data are
250Hz.

In our experiments, the data are split into three parts;
training and validation parts subsume 70% and 30% of the
simulation data, respectively. The real sensor data are tested
from the model trained on the simulated data. During the
training process, the input lengths are set as 100 and all data
are normalized to (-1, 1). After sampling, we have 400k trained
data. A large amount of data can avoid over-fitting. The SGD
[29] is used as an optimization algorithm with a mini-batch
of 512. The learning rate starts from 0.1 and is divided by
ten after 50 epochs. The models are trained for 200 epochs.
Mean absolute error (MAE), root mean square error (RMSE),
root mean square logarithmic error (RMSLE), and symmetric
mean absolute percentage error (SMAPE) [30] are chosen as
objective metrics for quantitative evaluation. The four metrics
are written as:

MAE(x, x̂) =
1

T

T∑
i

|x− x̂i| (7)

SMAPE(x, x̂) =
100

T

T∑
i

|x− x̂|
|x|+ |x̂|

(8)

RMSE(x, x̂) =

√√√√ 1

T

T∑
i

(x− x̂i)2 (9)

RMSLE(x, x̂) =

√√√√ 1

T

T∑
i

(log(x+ 1)− log(x̂i + 1))2 (10)

B. Modeling Induction Motor Dynamics Results

We select five state-of-the-art methods as deep learning-
based benchmarks to make fair comparisons with our method.
The five methods are GRU [28], time convolution network
(TCN) [17], Wave U-net [2], Wave U-net with RNN skip
connection (RNN skip) [3], and Wave U-net with diago-
nal RNN skip connection (DIAG skip) [3]. All comparative
methods are trained with an identical setting. Comparison
results on the simulated and the real-world data, GFLOPs
and parameters of the model are shown in Table II. The
errors from GRU are larger than errors from other methods,

which demonstrates that CNN can model dynamics better. The
proposed method outperforms the state-of-the-art by a wide
margin on two datasets. Furthermore, compared to the second-
best performance method (i.e., DIAG skip [3]), our model can
achieve better accuracy and at least save 64 % parameters with
less computation. It can prove that the grid and cross-scale
connection not only save parameters but effectively extract
the features from different scales in the proposed network.

We also plot the modeling results of torque and Iq for one
of the raw samples in Fig. 5. The results from other models
have some offset in its prediction. On the other hand, the result
from our model is the closest to the ground truth.

(a) (b)
Fig. 5. The visualization of predicted signals by GRU [15], DIAG skip [3],
our model and the ground truth. (a) Torque τ . (b) Iq .

C. Ablation Study
To verify the effectiveness of the residual grid unit and the

Chabonnier loss, we conduct the ablation studies. The first
experiment uses our model without residual blocks and grid
connection. The second experiment applies the grid structure
model without residual blocks. We also train the LRG-net
with different losses such as smooth L1 , L1 and L2. We
apply the simulated data and list MAE and SAMPE of various
experiments in Table III. As shown in Table III, the combina-
tion of grid connection, residual blocks and Chabonnier loss
contributes to the best performance.

IV. CONCLUSION

In this paper, we propose a new lightweight residual grid
network (LRG-net) to model the induction motor dynamics.
The model applies residual blocks and is stacked as a grid
shape to effectively extract the feature of the input signal and
predict the output signal. Several experimental results show
our network outperforms other deep learning models. With
effective grid connection, our model takes the least parameters,
which is suitable for monitoring the status of motors in the
real-world scenario.

In the future, we will extend this model to design the motor
control raw. Moreover, LRG-net topology will be investigated
for other applications like speech enhancement [31] and image
denoising [6], [32]
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TABLE II
QUANTITATIVE COMPARISONS OF EXISTING FIVE METHODS ON SIMULATION AND THE REAL-WORLD INDUCTION MOTOR SIGNAL.

#Model #Model Simulation Data Real-world Data
params flops MAE SMAPE RMSE RMSLE MAE SMAPE RMSE RMSLE

GRU [28] 0.23M 0.03G 0.0392 7.03 0.0666 0.0437 0.0499 9.20 0.0738 0.0498
TCN [17] 0.55M 0.01G 0.0324 5.69 0.0568 0.0368 0.0417 7.69 0.0570 0.0417

Wave U-net [2] 0.37M 0.02G 0.0202 3.62 0.0434 0.0292 0.0327 6.11 0.0495 0.0318
RNN skip [3] 0.64M 0.05G 0.0179 3.22 0.0431 0.0283 0.0310 5.75 0.0509 0.0322
DIAG skip [3] 0.62M 0.05G 0.0197 3.54 0.0448 0.0293 0.0300 5.86 0.0484 0.0318

LRG-net 0.23M 0.02G 0.0154 2.78 0.0376 0.0248 0.0297 5.43 0.0427 0.0274

TABLE III
THE ABLATION STUDY SHOWS THE EFFECTIVENESS OF THE RESIDUAL
LAYER (RES), THE GRID CONNECTION (GRID) AND LOSS FUNCTION.

Res Grid Loss MAE SMAPE
LCha 0.0221 3.68√
LCha 0.0199 3.60√ √

Smooth L1 0.0162 2.88√ √
L1 0.0176 2.94√ √
L2 0.0182 3.02

√ √
LCha 0.0154 2.78
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[15] K. Cho, B. van Merriënboer, C. Gulcehre, D. Bahdanau, F. Bougares,
H. Schwenk, and Y. Bengio, “Learning phrase representations using rnn
encoder–decoder for statistical machine translation,” in Proceedings of
the Conference on Empirical Methods in Natural Language Processing
(EMNLP), 2014.

[16] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
computation, vol. 9, no. 8, pp. 1735–1780, 1997.

[17] E. Aksan and O. Hilliges, “Stcn: Stochastic temporal convolutional
networks,” in International Conference on Learning Representations,
2018.

[18] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proceedings of the IEEE conference on computer vision
and pattern recognition, 2016.

[19] Z. Lu, K. Deb, and V. N. Boddeti, “Muxconv: Information multiplexing
in convolutional neural networks,” in Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, 2020.

[20] K. Han, Y. Wang, Q. Tian, J. Guo, C. Xu, and C. Xu, “Ghostnet:
More features from cheap operations,” in Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, 2020.

[21] Y. Li, X. Jin, J. Mei, X. Lian, L. Yang, C. Xie, Q. Yu, Y. Zhou, S. Bai,
and A. L. Yuille, “Neural architecture search for lightweight non-local
networks,” in Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, 2020.

[22] Y. Gorbachev, M. Fedorov, I. Slavutin, A. Tugarev, M. Fatekhov, and
Y. Tarkan, “Openvino deep learning workbench: Comprehensive analysis
and tuning of neural networks inference,” in Proceedings of the IEEE
International Conference on Computer Vision Workshops, 2019.

[23] C. Feichtenhofer, H. Fan, J. Malik, and K. He, “Slowfast networks
for video recognition,” in Proceedings of the IEEE/CVF International
Conference on Computer Vision, 2019.

[24] G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Weinberger, “Densely
connected convolutional networks,” in Proceedings of the IEEE confer-
ence on computer vision and pattern recognition, 2017.

[25] Y. Chen, H. Fan, B. Xu, Z. Yan, Y. Kalantidis, M. Rohrbach, S. Yan, and
J. Feng, “Drop an octave: Reducing spatial redundancy in convolutional
neural networks with octave convolution,” in Proceedings of the IEEE
International Conference on Computer Vision, 2019.

[26] S. Liu, L. Qi, H. Qin, J. Shi, and J. Jia, “Path aggregation network
for instance segmentation,” in Proceedings of the IEEE conference on
computer vision and pattern recognition, 2018.

[27] J. T. Barron, “A general and adaptive robust loss function,” in Pro-
ceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, 2019.

[28] J. Chung, C. Gulcehre, K. Cho, and Y. Bengio, “Empirical evaluation of
gated recurrent neural networks on sequence modeling,” arXiv preprint
arXiv:1412.3555, 2014.

[29] L. Bottou, “Online learning and stochastic approximations,” On-line
learning in neural networks, vol. 17, no. 9, p. 142.

[30] P. Goodwin and R. Lawton, “On the asymmetry of the symmetric mape,”
International journal of forecasting, 1999.

[31] C.-H. H. Yang, J. Qi, P.-Y. Chen, Y. Ouyang, I.-T. D. Hung, C.-H. Lee,
and X. Ma, “Enhanced adversarial strategically-timed attacks against
deep reinforcement learning,” in ICASSP 2020-2020 IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP).
IEEE, 2020, pp. 3407–3411.

[32] H.-H. Yang and Y. Fu, “Wavelet u-net and the chromatic adaptation
transform for single image dehazing,” in 2019 IEEE International
Conference on Image Processing (ICIP). IEEE, 2019, pp. 2736–2740.

1540


