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Abstract—Many of the machine learning tasks are focused on
centralized learning (CL), which requires the transmission of
local datasets from the clients to a parameter server (PS) leading
to a huge communication overhead. Federated learning (FL)
overcomes this issue by allowing the clients to send only the model
updates to the PS instead of the whole dataset. In this way, FL
brings the learning to edge level, wherein powerful computational
resources are required on the client side. This requirement
may not always be satisfied because of diverse computational
capabilities of edge devices. We address this through a novel
hybrid federated and centralized learning (HFCL) framework to
effectively train a learning model by exploiting the computational
capability of the clients. In HFCL, only the clients who have
sufficient resources employ FL; the remaining clients resort to
CL by transmitting their local dataset to PS. This allows all
the clients to collaborate on the learning process regardless of
their computational resources. We also propose a sequential data
transmission approach with HFCL (HFCL-SDT) to reduce the
training duration. The proposed HFCL frameworks outperform
previously proposed non-hybrid FL (CL) based schemes in terms
of learning accuracy (communication overhead) since all the
clients collaborate on the learning process with their datasets
regardless of their computational resources.

Index Terms—Machine learning, federated learning, central-
ized learning, edge intelligence, edge efficiency.

I. INTRODUCTION

Machine learning (ML) has emerged as a promising en-
gineering for future technologies such as internet of things
(IoT), autonomous driving and next-generation wireless com-
munications [1, 2]. These applications require massive data
processing and abstraction by a learning model, often an
artificial neural network (ANN), by extracting the features
from the raw data and providing a “meaning” to the input
via constructing model-free data mapping with huge number
of learnable parameters [3, 4]. The implementation of these
learning models demands powerful computational resources,
such as graphics processing units (GPUs). Therefore, huge
learning models, massive amount of training data, and power-
ful computation infrastructure are the main driving factors of
the success of ML algorithms [5].

Implementations of ML usually focus on centralized learn-
ing (CL) algorithms, where a powerful ANN is trained at a
parameter server (PS) [1, 6, 7]. This inherently assumes the
availability of data at the PS. In case of wireless edge devices
(clients), transmitting the collected data to the PS in a reliable
manner is expensive in terms of energy and bandwidth, thereby
introducing delays and possible infringements of client privacy
[8]. For example, in long-term evolution (LTE) networks, a

single frame of 5 MHz bandwidth and 10 ms duration may
carry only 6000 complex symbols [9], whereas the size of the
whole dataset could be hundreds of thousands symbols [10].
As a result, CL-based techniques require huge bandwidths and
communications overhead during training.

As a practically viable alternative to CL-based training,
federated learning (FL) has been proposed to exploit the pro-
cessing capability of the edge devices and the local datasets of
the clients [7, 11]. In FL, rather than transmitting local datasets
to the PS, the clients send the model updates (gradients) to
collaboratively train the learning model. The collected model
updates are aggregated at the PS and then sent back to the
clients to further update the learning parameters iteratively.
Compared to CL, FL provides less communications overhead
with a slight prediction loss because of insufficient gradient
components and data corruptions during wireless gradient
transmission.

Recently, FL has been applied to wireless communica-
tions [12, 13], including architectures such as cellular net-
works [9, 14, 15], vehicular networks [16], unmanned aerial
vehicles [17] and IoT networks [18]. Here, FL architectures
relied on the fact that all of the clients were capable of
gradient computation, often using powerful parallel processing
units. However, in practice, considering the diversity of the
devices with different computational capabilities - such as
mobile phones, vehicular components and IoT devices - this
requirement cannot be met. A possible solution lies in a hybrid
learning technique that benefits from both CL and FL. Here,
the devices incapable of sufficient computation power deploy
CL while the rest use FL. To this end, the client selection
algorithms proposed in [19, 20] do not involve a collaboration
of all the devices; instead, only the trusted clients [19] or the
ones with sufficient computational resources [20] are selected
for FL-based training.

In this paper, we introduce a hybrid FL and CL (HFCL)
framework to effectively train a learning model where the
edge devices collaborate on the learning process by exploiting
their computational capabilities (Fig. 1). In the beginning, we
designate the clients as passive (CL) or active (FL) depending
on their computational power. Then, the active clients transmit
the gradient information to the PS based on their local dataset.
On the other hand, the passive clients transmit their dataset
to the PS, which computes the corresponding gradients data
on behalf of them. At the PS, the computed gradients are
utilized to aggregate the model parameters, which are then sent
back to active devices. The challenge for HFCL is the wait
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Fig. 1. In a CL framework (left), all clients transmit their datasets to the PS.
On the other hand, the datasets are preserved at the clients in FL (center) and
only model parameters are sent to the PS. In HFCL (right), the clients are
grouped into active and passive depending on their computational capability
to either perform CL and FL, respectively.

required by the active clients when the passive clients complete
their data set transmission at the beginning of the training.
To mitigate this problem, we propose a sequential dataset
transmission (SDT) approach where the passive clients do not
send the entire local dataset at once. Rather the local dataset
is divided into smaller blocks so that both active/passive
devices perform gradient/data transmission during the same
communication exchange. We evaluate the performance of
the proposed approaches on MNIST dataset [21] and show
that both techniques provide higher learning performance than
FL while introducing a slight increase in the communication
overhead arising from dataset transmission. However, this
overhead is still less than that of CL.

Notation: Throughout the paper, we denote the vectors
and matrices by boldface lower and upper case symbols,
respectively. In case of a vector a, [a]i represents its i-th
element. For a matrix A, [A]i,j denotes the (i, j)-th entry.
The IN is the identity matrix of size N × N ; ‖ · ‖F is the
Frobenius norm; The notation expressing a convolutional layer
with N filters/channels of size D×D is given by N@D×D.

II. DESIDERATA ON CL AND FL

Consider a scenario, wherein K edge devices collaborate
on solving an optimization problem through ML. Define Dk
to be the local dataset of the k-th client so that the whole
dataset is D =

⋃
k∈KDk, where K = {1, . . . ,K}. Denote the

input and output tuple Di of the i-th element of the dataset
D by Xi and Yi, respectively, such that Di = (Xi,Yi) and
D = |D| is the number of input-output pairs. The CL-based
training considers a learning model parameterized by θ ∈ RP
and optimized via

minimize
θ

F(θ) =
1

D

D∑
i=1

J (f(Xi|θ),Yi), (1)

where the non-linear mapping between the input and output
is constructed via f(Xi|θ) by minimizing the empirical loss
F(θ) over the learnable parameters θ and the loss function
J (·) is the mean-squared-error (MSE) between the label data
Yi and the prediction f(Xi|θ) of the learning model over the
whole dataset, i.e.,

J (f(Xi|θ),Yi) = ‖f(Xi|θ)− Yi‖2F . (2)

In CL, (1) is solved at a PS, which collects the local datasets
Dk, k ∈ K from the clients.

On the other hand, transmission of datasets is avoided in
FL by considering the following optimization problem

minimize
θ

1

K

K∑
k=1

Fk(θ),

subject to: Fk(θ) =
1

Dk

Dk∑
i=1

J (f(X (k)
i |θ),Y(k)

i ), (3)

for which the learning model is trained over the local datasets
Dk with input-output pair (X (k)

i ,Y(k)
i ) and Dk = |Dk|.

III. HYBRID FEDERATED AND CENTRALIZED LEARNING

In this section, we introduce the proposed HFCL framework
by taking into account the computational capability of the
clients so that all of the clients can contribute to the learning
task with their datasets regardless of their ability to compute
model parameters. In ML tasks, training a model requires huge
computational power to compute the model parameters. This
requirement cannot always be satisfied by the computational
capability of the client devices. In order to train the ML model
effectively taking into account the computational capability
of the clients, a hybrid training framework is introduced in
this work. We assume that only a portion of the clients
with sufficient computational power performs FL, while the
remaining clients, which suffer from computational capability,
send their datasets to the PS for model computation, as
illustrated in Fig. 1.

In order to train the learning model, the minimization
of F(θ) is carried out iteratively through gradient descent
(GD). Denote the model parameters at the t-th communication
round/iteration as θt, t = 1, . . . , T , where T denotes the
number of iterations to reach the convergence. Then, the
(t+ 1)-th iteration of GD yields

θt+1 = θt − ηtg(θt), (4)

where ηt is the learning rate and

g(θt) = ∇θF(θt) =
1

D

D∑
i=1

∇θJ (f(Xi|θt),Yi), (5)

denotes the full or batch gradient vector in RP , where P is
the total number of learnable model parameters.

For large datasets, GD is computationally inefficient. A
better alternative is stochastic GD (SGD), where D is par-
titioned into MB mini-batches as D =

⋃
m∈MB

Dm, for
MB = {1, . . . ,MB} [22]. Then, θt is updated by

θt+1 = θt − ηtgMB
(θt), (6)

where gMB
(θt) = 1

MB

∑MB

m=1 gm(θt) includes the contribu-
tion of gradients computed over {Dm}m∈MB

as

gm(θt) =
1

Dm

Dm∑
i=1

∇θJ (f(Xm,i|θt),Ym,i), (7)
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where (Xm,i,Ym,i) denotes the i-th input-output pair for the
m-th mini-batch and Dm = |Dm| is the mini-batch size.

The gradient term gMB
(θt) satisfies E{gMB

(θt)} =
∇θF(θt) and, therefore, SGD provides the minimization of
the empirical loss by partitioning the dataset into MB mini-
batches and accelerates the learning process, which is known
as mini-batch learning [22]. Employing SGD in parallel among
several devices allows us to compute the gradients on devices
and aggregate them in the PS, which is known as FL [8].

In our HFCL approach, denote the group of active and
passive clients that employ gradient computation at the PS
and device levels as the index sets L = {1, . . . , L} and
L̄ = K\L = {L+1, . . . ,K}, respectively. Then, (4) becomes

θt+1 = θt − ηt
(

1

L

∑
k∈L

gk(θt)︸ ︷︷ ︸
On Server

+
1

K − L
∑
k∈L̄

ḡk(θt)︸ ︷︷ ︸
On Device

)
, (8)

the computation of gk∈L(θt) is done via mini-batch learning
as gk∈L(θt) = 1

MB

∑MB

m=1 gm,k∈L(θt) where gm,k∈L(θt) =

∇θJ (f(X (k)
m,i|θt),Y

(k)
m,i) considering that the PS has access to

the dataset Dk∈L. The gradients corresponding to the active
clients ḡk∈L̄ are collected at the PS through a noisy wireless
channel as

ḡk∈L̄(θt) = QB(gk∈L̄(θt)) + wk∈L̄,t, (9)

where QB(·) represents the quantization operator with B
bits and wk∈L̄,t ∈ RP denotes the noise term added onto
QB(gk∈L̄(θt)) at the t-th iteration.

Without loss of generality, we assume that wk∈L̄,t obeys
normal distribution, i.e., wk∈L̄,t ∼ N (0, σ2

θIP ) with variance
σ2
θ and the signal-to-noise-ratio (SNR) in gradient transmission

is given by SNRθ = 20 log10
||gk∈L̄(θt)||22

σ2
θ

. The same amount
of noise is also added onto Dk∈L during dataset transmission
for passive clients. Once the model aggregation is completed
during model training, the PS returns the updated model
parameters θt+1 to only the active clients.

A. Communication Delay During Model Training
The bandwidth resources need to be optimized to reduce

the latency of the transmission of both gk(θ) (k ∈ L̄) and Dk
(k ∈ L) to the PS during training. Let τk be the communication
time for the kth client to transmit its either dataset (Dk for
k ∈ L) or model updates (gk(θ) for k ∈ L̄), and can defined as
τk = dk

Rk
, where dk denotes the number of dataset symbols to

transmit and Rk = Bk ln(1 + SNRk) is the achievable trans-
mission rate, for which Bk and SNRk, respectively, denote
the allocated bandwidth and the signal-to-noise ratio (SNR)
for the kth client. The PS solves minBk

maxk∈K τk to op-
timize the bandwidth allocation by minimizing the maximum
communication delay. This is because the model aggregation
in the PS can be performed only after the completion of the
slowest transmission for k ∈ K. Although Rk can vary for
k ∈ K, dk differentiates more significantly than Rk between

the passive (i.e., k ∈ L) and active (i.e., k ∈ L̄) clients [23].
Depending on the client type, dk can be given by

dk =

{
P, k ∈ L̄
dk, k ∈ L , (10)

which is fixed to the number of model parameters P for the
active clients and to dk = Dk(UxVx + UyVy) for Dk input
(∈ RUx×Vx ) and output (∈ RUy×Vy ) dataset samples. Since
the dataset size is usually larger than the number of model
parameters in ML applications, i.e., dk∈L > P [7, 8, 12],
the dataset transmission of the passive clients is expected
to take longer than the model transmission of the active
clients, i.e., τk∈L > τk∈L̄ [23]. Previous FL-based works
reported that τk∈L can be approximately 10 times longer than
τk∈L̄ [12, 13]. This introduces a significant delay especially at
the beginning of the training. Because, the HFCL problem in
(8) can be performed only if Dk∈L is collected at the PS for the
first iteration. To circumvent this issue and keep the training
continue, we propose the SDT approach in the following.

B. HFCL With Sequential Data Transmission
The HFCL approach described above performs model ag-

gregation only after the dataset transmission for k ∈ L is com-
pleted when t = 1. This causes delays during model training.
In order to circumvent this problem, we propose HFCL-SDT
that partitions the local dataset of the passive clients into small
blocks and transmits them to the PS sequentially without any
delay. A conventional way is to partition the dataset Dk∈L into
N = Dk

P blocks, where the size of the transmitted symbols for
each communication round is equal to P for both passive and
active clients. For non-integer N , N = dDk

P e.
Then, compute gk∈L(θt) = 1

MB

∑MB

m=1 gm,k∈L(θt), where

gm,k∈L(θt)=

{
1
tP

∑tP
i=1∇θJ (f(X (k)

m,i|θt),Y
(k)
m,i), t ≤ N

1
Dk

∑Dk

i=1∇θJ (f(X (k)
m,i|θt),Y

(k)
m,i), t > N

. (11)

Note that the size of the training dataset for gk∈L(θt) grows as
t→ N . It is, however, constant for t > N when the size of the
transmitted dataset is fixed at P because the collected blocks
of the dataset are stored at the PS for t ≤ N . Consequently,
HFCL-SDT mitigates transmission delay but exhibits the same
communication overhead as HFCL. Furthermore, HFCL-SDT
performs better than HFCL because smaller datasets imply
quick learning of the features in the data at the beginning of
the training.

Communication overhead is measured by the number of
transmitted symbols during model training [3, 7, 8, 12]. For
CL (TCL), this overhead is the number of symbols used to
transmit datasets. The same for FL (TFL) is proportional to the
number of communication rounds T and model parameters P .
Denote D̄ =

∑
k D̄k as the number of symbols of the whole

dataset. The communication overheads of CL, FL and HFCL
are, respectively,

TCL = D̄, (12)
TFL = 2TPK, (13)

THFCL = LD̄k∈L + 2TP (K − L), (14)
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Fig. 2. Communication overhead comparison.

where THFCL includes the transmission of dataset of L passive
clients and gradients of K − L active clients. In general, FL
has lower communication overhead than CL [3, 7, 8, 12, 13].
Hence, it follows that TFL ≤ THFCL ≤ TCL.

IV. NUMERICAL SIMULATIONS

We evaluated the performance of our HFCL approach using
the MNIST dataset [21] comprising 28×28 gray-scale images
of handwritten digits with 10 classes. The number of symbols
on the whole dataset is D̄ = 282 · 60, 000 ≈ 47× 106. During
model training, the dataset is partitioned into K = 10 blocks,
each of which is available at the clients that are independently
and identically distributed. Further, we train a CNN with two
convolutional layers with 5×5@128 and 3×3@128 spatial fil-
ters. Thus, we have P = 128(52+32) = 4, 352. The validation
data of MNIST dataset includes 10, 000 images and it is used
for performance comparison for the competing algorithms. The
learning rate is selected as 0.001 and the mini-batch size is
128 for CL. The loss function was the cross-entropy cost as

− 1
D

∑D
i=1

∑C̄
c=1

[
Y(c)
i ln Ŷ(c)

i +(1−Y(c)
i ) ln(1−Ŷ(c)

i )

]
, where

{Y(c)
i , Ŷ(c)

i }
D,C̄
i=1,c=1 is the true and predicted response for the

classification layer with C̄ = 10 and the classification accuracy
is Accuracy(%) = U

D ×100, in which the model identified the
image class correctly U times.

Fig. 2 depicts the communication overhead of CL, FL and
HFCL for L = {0, 1, 3, 5, 7, 10}. During model training, 1000
data symbols are transmitted at each transmission block. It
takes approximately 47×103 transmission blocks to complete
CL-based training while FL demands approximately 8.5×103

data blocks (approximately 6 times lower than that of CL). The
communication overhead of HFCL (as well as HFCL-SDT)
lies between CL and FL because it depends on the number of
passive clients L and approaches to TCL as L→ K.

Fig. 3 shows the classification accuracy with respect to
number of passive clients, L when B = 5 quantization bits are
used and SNRθ = 20 dB. The proposed HFCL and HFCL-
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Fig. 3. Classification accuracy versus L when SNRθ = 20 dB and B = 5.
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Fig. 4. Classification accuracy versus B when SNRθ = 20 dB.

SDT approaches perform better than FL for 0 < L < K
because the collected gradients from the active clients are
corrupted by wireless channel and quantization whose effects
reduce as L → K. When L = 0, HFCL and HFCL-SDT are
identical to FL (all clients are active) whereas they perform
identically as CL if L = K = 10 (all clients are passive).
The HFCL-SDT provides higher accuracy than HFCL for
0 < L < K because the former performs gradient computation
on smaller datasets at the beginning of training for t < N thus
reaching higher accuracy levels quicker than the latter.

In Fig. 3, we also present the performance of FL with active
clients only, that is to say, the learning model is trained only
on the dataset of active clients, whereas it is tested on the
whole dataset. We observe that FL becomes unable to learn
the data as L increases since the training is conducted only on
the datasets of active clients. This shows the effectiveness of
our HFCL approach, in which all of the clients participate the
learning stage. It is worthwhile to note that when L = K = 10,
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Fig. 5. Classification accuracy versus SNRθ when Q = 5.

there will be no active clients as FL with only active clients
cannot work. The performance loss as L → K is due to the
absence of passive clients’ datasets can be severe if the dataset
is non-identically distributed because the active clients cannot
learn the whole features in the dataset of other devices.

The classification accuracy (Fig. 4) in terms of the quantiza-
tion levels for B ∈ [1, 8] when SNRθ = 20 dB shows that both
HFCL approaches perform better than FL and approach to CL
as an increase in B improves the resolution of the quantization
operation. The classification performance in Fig. 5 with respect
to the noise level on the model parameters, i.e., θ and gk(θ)
compares the competing algorithms for SNRθ ∈ [0, 20] dB.
Here, at least 10 dB noise level is required for reliable model
training for all approaches. While the same level of noise is
also added onto the dataset of passive clients, its influence
is more apparent on the gradients since it directly affects the
learning performance.

V. SUMMARY

We introduced a hybrid federated and centralized learning
(HFCL) approach for distributed machine learning tasks. The
proposed approach is helpful if a part of the edge devices
lack computational capability for gradient computation during
model training. In order to train the learning model collab-
oratively, only active devices with sufficient computational
capability perform gradient computation on their local datasets
whereas the remaining passive devices transmit their local
datasets to the PS. The delays arising from the transmission of
local datasets during training of the size of the passive clients
are large are mitigated by HFCL-SDT.
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