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Abstract—Applications of neural networks are emerging in
many fields and are frequently implemented in embedded envi-
ronment, introducing power, throughput and latency constraints
next to accuracy. Although practical computer vision solutions
always involve some kind of preprocessing, most research focuses
on the network itself. As a result, the preprocessing remains
optimized for the human perception and is not tuned to neural
networks. We propose the optimization of preprocesing along
with the network using backpropagation and gradient descent.
This open up the accuracy versus implementation cost design
space towards more cost-efficient implementations by exploiting
reduced precision input. In particular, we evaluate the effect of
two preprocessing techniques: color conversion and dithering,
using CIFAR10 and ImageNet datasets with different networks.

Index Terms—Data Preprocessing, Quantized Neural Networks

I. INTRODUCTION

Convolutional neural networks gained a lot of attention over
the last decade thanks to their performance now exceeding
humans for classification problems on the ImageNet challenge.
Recent works, like EfficentNet [1] also carefully track the
implementation cost of the network to enable their usage on
embedded or edge devices imposing thermal and/or power
constraints. This turns the development of the network into a
two dimensional optimization problem of accuracy and energy
efficiency. The goal is to find Pareto optimal implementations.

A well explored way of increasing energy efficiency is the
reduction of the arithmetic precision. This not only simplifies
the arithmetic units but it reduces the memory footprint
and resulting bandwidth. In many cases 8-bit activations
and weights are enough to achieve the accuracy of the
equivalent 32-bit floating-point network [2]. More aggressive
quantization often results in some accuracy degradation while
further improving the accuracy versus hardware cost trade-offs.
Binarized networks [3] push this to the extreme.

Quantization rarely extends to the input of the network
because the input precision can strongly influence the accuracy
of the neural network. Plotting the top-1 classification accuracy
as a function of the input precision (Fig. 1) for a full precision
VGG11 trained on CIFAR10 indicates a significant drop below
4-bits. For ImageNet the accuracy degradation is even larger
and can already be seen using 4-bit input.

To avoid this accuracy drop, current reduced precision neural
networks do not reduce the input precision, requiring a ’unique’
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Fig. 1. The accuracy drops becomes significant when the precision of the
input is less than 4 bit. The degradation is higher for ImageNet.

first layer (compared to the remainder of the neural network
layers). This results in a higher memory and compute cost
of the first layer’s processing core in case of a dataflow type
implementation [4]. Larger networks are typically mapped to
a homogeneous accelerator implementation with a single or
multiple Deep learning Processing Unit(s) (DPUs), evaluating
the network layer-by-layer [4]. The cost of the unique first layer
is even higher in this case, since the DPU needs to support both
8-bit (first layer) and 4-bit input activations with 8-bit weights.
This paper studies trainable preprocessing as technique to also
reduce the precision of the input to the reduced precision neural
network.

A. This Paper: Co-Optimization of Preprocessing

In practice the neural network is only a subpart of a complete
computer vision pipeline. Raw data coming from an image
sensors typically goes through image signal processing (ISP)
[5], see Fig. 2, and these ISPs have traditionally been designed
and configured for human perception. Neural networks might
require different kind of processing or different parameters. In
other words, the input data that can be the most easily classified
with the human eye is not necessary the best for a (reduced
precision) neural network.

We propose the optimization of preprocessing techniques
inspired by traditional ISP along with the neural network using
gradient descent and back-propagation and call them trainable
preprocessing. The aim is to achieve implementations of neural
networks that use the same reduced precision at the input as
for the rest of the network and therefore consume less energy
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Fig. 2. A complete computer vision pipeline with camera, Image Signal
Processor (ISP) and neural network. By adding trainable preprocessing, data
can enter the neural network directly in a reduced precision format.

at the cost of an acceptable or no accuracy degradation. More
specifically, this work focuses on color conversion and dithering.
In the long term we plan to co-optimize the ISP or work directly
on RAW data, but as the available labeled datasets contains
already ISP-processed images, we add additional preprocessing
and co-optimize it with the neural network to achieve more
efficient implementations (Fig. 2).

Our contributions can be summarized as follows:
• We co-train preprocessing and neural networks.
• We train dither parameters with backpropagation.
• We exploit trainable preprocessing techniques to reduce

input precision to reach more pareto optimal accuracy
versus complexity (measured in Bit-Operations Performed
(BOP) [6]) solutions.

• We conduct experiments on CIFAR10 and ImageNet.
All source code of our experiments is available (https://github.

com/Xilinx/trainableProcessing) including the implementation
of the preprocessing techniques, their training and the code of
the networks with their training scripts and hyperparameters.

This paper is organized as follows. Section 2 reviews related
work. Section 3 introduces the training of the two preprocessing
techniques. Section 4 explains how we evaluate the proposed
concept. In Section 5 we present our results. Sections 6 lists
observations and presents future work. Finally, Section 7 draws
the conclusions.

II. RELATED WORK

EfficientNet [1] and others address the inference implemen-
tation cost by reducing the number of parameters without
any accuracy degradation. An alternative method is reducing
the precision of weights and activations. Ristretto [2] is an
approximation framework for neural networks quantizing both
weights and activations to 8-bit fixed point representation
without losing significant accuracy. The usage of very reduced
precision weights and activations has been studied extensively:
binarized [3], QNN [7] and FINN [8]. These works only focus
on improving the energy efficiency of the neural network
and not on the optimization of the complete computer vision
pipeline. A few studies analyze the importance of preprocessing
in image classification. ColorNet [9] explores the effect of
color spaces on classification accuracy. Kornia [10] provides a
framework to insert image processing techniques into neural
networks but does not analyze the optimization of preprocessing
for neural networks. An adaptive method for dithering was
proposed by Akarun et al. [11], but not for neural networks. The
current paper trains parameters of conventional preprocessing
techniques together with the network to improve the accuracy
of reduced precision neural networks.

Fig. 3. Dithering diffusing the quantization error among the pixels. Pixels are
processed in a sequential order: top left to bottom right.

III. OPTIMIZING PREPROCESSING JUST LIKE OTHER
LAYERS OF THE NETWORK

Preprocessing is an unconventional layer at the beginning of
the network. Backpropagation of gradients can also be used to
train parameters of preprocessing, if the preprocessing function
is differentiable. Training calculates the derivative of the loss
with respect to the preprocessing parameters:

ŷn = f(xn, w, b, p) (1)
∂`(ŷn, yn)

∂p
=

∂`(ŷn, yn)

∂xpreproc

∂xpreproc

∂p
, (2)

where the output of the network (ŷn) is a function (f(·)) of
the original sample from the dataset (xn), the parameters of
the network (w,b) and the preprocessing parameters (p). To
get the derivative of the loss with respect to the preprocessing
parameters (∂`(ŷn,yn)

∂p ), first the derivative of the loss with
respect to pixels of the preprocessed image has to be backprop-
agated (∂`(ŷn,yn)

∂xpreproc
, where xpreproc is the preprocessed image),

and secondly the derivative of the preprocessed pixels with
respect to the preprocessing parameters (∂xpreproc

∂p ) has to be
determined.

A. Dithering

Dithering is an image processing technique for error diffu-
sion. The human eye processes regions of images by averaging
color information in the neighborhood of the focus. If the spatial
resolution is high enough, a diffusion of the quantization error
can balance the average color sensed by the eye, and create an
illusion of using a contiguous color palette. 2D convolution,
the major operation of CNNs, extracts new features locally
with a fixed window size. Therefore, it is natural to expect that
dithering can improve the quality of input images for neural
networks as well. The quantization error depends on the input
image. By diffusing the quantization error over the image,
dithering allows the quantization to act as if it is independent
of the input [12]. Dithering updates pixels with the weighted
average of the quantization error of the adjacent pixels (Fig. 3)
according to Eq. 3 for input pixel i(x, y) with quantization error
e(i, j) of an adjacent pixel, dithering parameters p(i, j). id(x, y)
is the updated value of the pixel, Q(·) is the quantization
function and iq(x, y) is the final quantized value.
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id(x, y) = i(x, y) + e(x− 1, y − 1)p(−1,−1)
+ e(x− 1, y)p(−1, 0) + e(x− 1, y + 1)p(−1, 1)
+ e(x, y − 1)p(0,−1)

(3)
iq(x, y) = Q(id(x, y)), (4)

The most known dithering filter is Floyd-Steinberg (FS) [12]
and was designed to produce quantized images that look nice
for the human eye. Dithering parameters leading to highest
accuracy are not necessary identical to those. Training dithering
parameters requires that the derivative of the dithered image
with respect to dithering parameters exists. However, there are
two challenges in expressing this derivative.

Firstly, the derivative of our quantization function (where it
exists) is zero. If this zero derivative is used to train parameters,
the gradient of the loss is always zero and the parameters
would not change. The Straight Through Estimation (STE)
[13] solves this by estimating the derivative of the quantization
function with the derivative of the identity function within the
quantization range:

∂iq(x, y)

∂id(x, y)
= 1 (5)

where iq(x, y) is the final quantized value of the pixel, while
id(x, y) is the input to the quantization function. Thus,

∂iq(x, y)

∂p(i, j)
=

∂iq(x, y)

∂id(x, y)

∂id(x, y)

∂p(i, j)
=

∂id(x, y)

∂p(i, j)
(6)

where p(i, j) is a trainable dithering parameter.
The second problem is the data dependency among pixels.

A pixel can only be processed if the adjacent pixels it depends
on have all been processed. This means that in Eq. 3 all
quantization errors are influenced by the dithering parameters
p. Unfortunately, to determine the derivative of a corrected
pixel with respect to p the derivative of the quantization error
of the adjacent pixels with respect to p has to be expressed.

∂e(i, j)

∂p(m,n)
=

∂id(i, j)

∂p(m,n)
− ∂iq(i, j)

∂p(m,n)
= 0, (7)

However, due to the straight through estimation (Eq. 5) these
derivatives are identical (Eq. 6) and the derivative of the error
with respect to the parameter is zero. To sum up, applying
STE for dithering breaks the chain of dependencies to get a
simple derivative, that is used to calculate the gradient of the
loss with respect to p:

∂L
∂p(m,n)

=
∑
i

∑
j

∂L
∂iq(i, j)

e(i+m, j + n) (8)

B. Color Conversion

The human vision perceives a wide spectrum of colors using
the additive RGB color model meaning that the human eye
has receptors to measure the intensity of red, green and blue
light. In image processing Color Conversions (CC) are used
frequently because some color models fit better for certain

algorithms than others. When inserting neural networks into
computer vision pipeline usually the RGB representation is
used, even though it might not be the best representation of
an image for the neural network [9].

imgx
imgy
imgz

 =

wxr wxg wxb

wyr wyg wyb

wzr wzg wzb

imgr
imgg
imgb

 (9)

Instead of directly quantizing the RGB images, conversion
of the original RGB channels (imgr,g,b) is proposed with a
linear transformation into three new channels imgx,y,z (Eq.
9). The goal is to train the coefficients of this transformation
to get a new representation of the original image that is less
sensitive for quantization.

IV. EXPERIMENTAL SETUP AND RESULTS

Preprocessing a reduced input for the (quantized) neural
network impacts both accuracy and complexity. The baseline
for accuracy is set to an reduced precision implementation
using the original 8-bit inputs. Trained dithering is also
compared to traditional FS dithering, using the same kernel
size and shape. To include the reduced precision aspect of the
operations, the complexity is evaluated with the Bit-Operations
Performed (BOP) [6] metric. We implemented and trained our
preprocessing layers as Pytorch modules (see the open source
training script).

The experiments use both low resolution CIFAR10 and
the large scale ImageNet datasets, with an input precision
adjusted to the reduced precision of the activations resulting
in an IxWyAz network: x is the bit width of the input, y is
the bit width of the weights and z is the bit width of the
activations. The CIFAR10 experiments run on CNV I1W1A1
[8] whereas ImageNet uses MobileNetV1 I4W4A4 [14]. To
isolate the effect of the trainable preprocessing techniques from
the quantization of the weights and activations, they are also
evaluated on a floating-point network where only the input
precision is reduced (VGG11 [15] on CIFAR10 and ResNet18
[16] on ImageNet).

Next subsections first introduce the extension to the BOP
metric for the complexity evaluation, then results and finally
the ablation study.

A. Computational complexity estimation

BOPC in Eq. 10 is conv2d cost, with bw weight bits, ba
activation bits, n input and m output channels, k is the size
of filters. CC uses the same formula with k = 1.

BOPc = mnk2(babw + ba + bw + log2(nk
2))

BOPd = ml((ba + 1)bp + 2ba + 2 + bp + log2(l))
(10)

BOPd extends the BOP metric to dithering with ba dither
input bits (typically 8), bp dither parameters bits, m channels
and l dither parameters. The accumulation is on the result
of a subtraction, so ba + 1 bits and we need to add the cost
of the subtraction, in addition ba + 1. The bitwidth of the
preprocessing parameters was 8-bit in our experiments.
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Fig. 4. Trained dithering outperforms FS dithering by far on a CNV W1A1
with CIFAR10.
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Fig. 5. 4-bit MobileNetV1 experiments on ImageNet recovering allmost all
accuracy loss.

B. Results

On the fully binarized CNV W1A1 network (Fig. 4), direct
quantization of the input to binary values leads to 14%
accuracy degradation . FS dithering results regains 1.91% top-1
accuracy, CC 1.88%. Trained dithering outperforms all the
other preprocessing techniques, 4.13% over FS, up to 6.01%
improvement over direct quantization.

The W4A4 MobileNetV1 (Fig 5) experiments focus on
this benefit of the trainable preprocessing and based on the
results for CIFAR10 avoid FS dithering. While the trained CC
already improves the accuracy over direct quantization, trained
dithering is more effective: only 0.2% worse top-1 accuracy
than using the 8-bit input for the W4A4 version.

Trained dithering achieves similar accuracy as FS but at a
reduced complexity. Looking at the trained dither parameter
values 1, the top-left values are zero (for all color channels),

1dither kernel parameters [p(-1,-1),p(-1,0),p(-1,1),p(0,-1)]: FS
[0.0625, 0.3125,0.1875,0.4375]; trained R: [0,0.4192,0.0361,0.4453],
G: [0,0.4161,0.0239,0.4463], B: [0,0.3899,0.0655,0.4463]

TABLE I
BOP COST OF 4-BIT MOBILENETV1’S FIRST LAYER.

Preproc (BOPs) Preproc + First layer (BOPs)
8-bit Input - 50341

4-bit Direct Quant. - 33061
4-bit Trained Color Conv. 763 33823

4-bit FS Dither. 1233 34294
4-bit Trained Dither. 925 33985

which is no the case for FS. This is exploited to reduce the
complexity of the accelerator (Table I).

The complexity of first layer using reduced (4-bit) precision
input is 34% lower (Table I) than the 8-bit variant. The cost of
preprocessing is almost negligible compared to the cost of the
first layer. Note that the complexity gain for a layer-by-layer
solution would exceed this, since support the larger (8-bit)
bitwidth of the input can completely be omitted from this type
of accelerator.

C. Ablation Study

Fig. 6 shows the achieved top-1 accuracy of a floating-point
VGG11 using direct quantization, trained CC, FS dithering
and trained dithering when the input precision is reduced to
1,2 and 3-bit. The direct quantization of the input images
to 1,2 and 3-bit increases the top-1 error by 14.12%, 6.96%
and 1.59% respectively (similar to Fig. 1). FS dithering
significantly improves this top-1 error. It reduces the accuracy
gap between the binarized and the original 8 bit input to half
(7.38% better than direct quantization). Training the dithering
parameters outperforms FS dithering and leads to another 1.2%
improvement. For 2 or 3-bit input images, FS dithering is
similar to the trained one (3.17% improvement compared to
direct quantization). Trained CC is less effective than dithering
for binarzed inputs (6.14% worse), but it outperforms dithering
when the input precision is reduced to 2 bits by 0.77%.

Using the ImageNet dataset on a full-precision ResNet18
(Fig. 7) yields similar trends like on CIFAR10. Direct quanti-
zation of the input images results in 66.94%, 22.25%, 5.54%,
and 1.77% accuracy degradation using 1, 2, 3 and 4-bit input
respectively. Trained CC can recover a significant portion of
this loss (44.24%, 13.92%, 2.17% and 0.3% improvement for
1, 2, 3 and 4-bit input respectively). Dithering appears to be the
more effective technique to recover the most of the accuracy
loss. FS dithering achieves only 3.5%, 2.41%, 1.27% and 0.62%
(for 1, 2, 3 and 4-bit) worse top-1 accuracy than using the 8-bit
original input. For the 1-bit input it recovers 63.44% accuracy
loss.

V. OBSERVATIONS AND FUTURE WORK

Usually, the input of full-precision neural networks is
normalized (to 0 mean and standard deviation of 1) to speed
up the training process. On the other hand, the quantization
of the input images requires a range in which we equally
distribute the quantization levels. A too wide or or too tight
range results in inefficient usage of bits. In our evaluation setup
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accuracy becomes marginal.
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Fig. 7. Full-precision ResNet18 on ImageNet dataset. Dithering can more
effectively recover accuracy loss than trained CC.

the quantization range was between -1 and 1. If normalization
is enabled some values are pushed outside of this range and
they are clamped. This loss of quality in the input images
led to 3% accuracy degradation in the Imagenet experiments.
Therefore, input normalization is disabled for quantized inputs,
matching the maximum value of the image (255 in 8-bit) to 1
and the minimum value (0 in 8-bit) to -1.

As future research, we will map our trainable preprocessing
techniques to real hardware implementations to get better
insight into to cost of neural networks with trainable pre-
processing. Moreover, we plan to explore options to directly
use raw (image sensor) data. This will enable training the
parameters of the ISP itself.

VI. CONCLUSION

Cost efficient implementations of neural networks often only
focus on reducing the precision in the network, while keeping
full precision at its input. This paper explored how trainable
prepossessing (dithering and color conversion) can be applied to
also reduce the input precision as technique to further improve
the energy efficiency. We extend the training process of the
neural network to the parameters of this preprocessing.

Experiments with the CIFAR10 and ImageNet on different
neural network topologies showed a significant accuracy
improvement compared to direct quantization of the input
data. On the binary CNV network trained on CIFAR10, the
trained dithering outperforms direct quantization by 6.01%,
recovering 45% of the accuracy degradation related to input
quantization. The quantized MobileNetV1 experiments showed
the same trends using the more complex ImageNet dataset. In
case of MobileNetV1 I4W4A4 trained dithering achieves only
0.2% worse top-1 accuracy than using the full-precision input,
but at 32% lower computational complexity.
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