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Abstract—In order to generate high-resolution Doppler
profiles a radar needs to emit a large number of pulses within
a coherent processing interval (CPI). For a radar operating in
demanding scenarios it can be difficult to sustain a long CPI
across search directions. In this work, an application of small
neural networks is proposed to augment the Doppler resolution
beyond the one detailed by basic radar parameters. A specific
neural network structure is proposed which can be trained
to operate on complex valued time-domain data and yield a
frequency transformed output with an increased Doppler bin
resolution. It is shown that by making use of these techniques a
radar can improve its ability to detect targets and to distinguish
closely spaced targets. A limited increase in the Doppler bin
resolution can be sustained with little to no negative impact on
the false alarm rate.

Keywords—Radar, range-Doppler, constant false alarm rate
(CFAR), discrete Fourier transform, neural networks

I. INTRODUCTION

The construction of range-Doppler maps constitutes a basic
but an important middle step in radar signal processing.
Transforming slow-time radar data into Doppler domain of-
fers integration gain and, simultaneously, targets with distinct
velocities can be differentiated from each others. Nevertheless,
in order to construct high-resolution range-Doppler maps the
radar needs to transmit a large number of pulses within a
coherent processing interval (CPI) as the number of bins
representing the Doppler domain complements the number of
emit pulses [1], [2].

In order to improve upon the resolution of range-Doppler
maps a variety of methods have been proposed in the literature.
Many of the techniques look at bandwidth extrapolation of
emit pulses while other aim for more versatile form of filtering
[3], [4], [5]. In other contexts, several deep learning methods
have been developed for super-resolution image reconstruction
[6], [7]. Super-resolution being defined as a resolution beyond
the original capability of the sensors hardware. The application
of these methods in radars have though been very limited
which can be attributed to the specific properties of radar
data and the required characteristics of range-Doppler maps.
A high-resolution map is simply not very practical if it also
results in an enlarged false alarm rate though these aspects
have not been addressed in details by current research. In [8],
a neural network based technique was proposed to generate
range-Doppler maps following the framework of a compressed
sensing radar (CS) and sparse reconstruction (SR). The radar
was assumed to collect data in a non-coherent CS mode with
inherent gaps and the neural networks were trained to generate
range-Doppler images, range bin by range bin, as under SR [9],
[10]. This was shown to work well although the reconstructed
range-Doppler maps were not fully sparse but contained low-
level noise. The other main disadvantage with this approach

is that the collected data would need to have gaps within it
and SR can be seen as a detection process in itself which is
not always desirable. More importantly, although the notion
of a CS radar is attractive and provides theoretical guarantees
for when the reconstruction process will converge, many radar
systems may not operate in such a mode which necessitates the
development of alternative methods for Doppler bin resolution
enhancement.

This work can be seen as complementing [8] and exploring
the other point of view where the new objective is to feed
a coherent set of limited slow-time data into small neural
networks in an attempt to obtain high-resolution Doppler
profiles for each range bin. The network must thus learn
to extrapolate time-domain data with respect to targets and
inherently perform a tapered Fourier transform in the same
process. High-resolution range-Doppler maps would in princi-
ple allow for supplementary integration gain and can therefore
be beneficial for detection of weak targets as long as a low
false alarm rate can be maintained. Further on, a more accurate
target placement with regard to Doppler bins allows constant
false alarm rate (CFAR) detectors to discriminate between
targets who may otherwise mask each other out.

Although machine learning has been in much focus over
the last years, training an artificial fully-connected neural net-
work to yield a complete discrete Fourier transform has been
seen as an intricate task and no clear learning strategy has been
proposed in the literature. It turns out that in order to design
neural networks to accomplish the aforementioned process, the
neural networks must be tailored to take account of the large
variation in the dynamic levels of slow-time data and such a
design is presented in this paper. To evaluate the outcomes, the
detectional capabilities of the generated range-Doppler maps
are thoroughly investigated in simulated scenarios with single
and multiple targets under standard CFAR detection schemes.

II. SYSTEM MODEL

In this text we assume a classical radar operating mode
where M pulses are emit towards a set direction in a CPI.
The targets are modeled as slowly fluctuating with Swerling
1 distribution where the values vary randomly between dwells
but with a given mean signal-to-noise ratio (SNR) per pulse.
The collected slow-time data is presumed to be represented by
a complex matrix S ∈ CM×R where the columns indicate
slow-time pulses while the rows the R range bins (fast-time).
For each CPI, the processing unit performs an independent
tapered Fourier transform over each range bin to construct a
range-Doppler map D ∈ CM×R. Targets exhibiting a constant
radial velocity thus emerge concentrated in a range-Doppler
map.
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To search for targets, each individual cell of the range-
Doppler map is assumed evaluated one by one through the cell
averaging (CA)-CFAR detector. The detector takes the point-
wise square law samples of the image D̂, D̂ = |D|.2, and a
sliding window of size 2N+2G+1 is moved across excluding
the edges. The 2N +2G+1 samples in range specified by the
window are extracted in x(u) = D̂(t−N−G : t+N+G,ω),
for a given 1 +N +G ≤ t ≤ R −N −G , 1 ≤ ω ≤ M and
u = 1, 2, ..., 2N+2G+1. The cell in the middle of the window,
x(N + G + 1), cell under test (CUT), is compared against a
scaled average, γ. G gap cells immediately to the right and
left of CUT are discarded and a detection is declared if

x(u)|u=CUT > γ K, (1)

where K is a set threshold. The background average, γ, in
CA-CFAR is computed by making use of all 2N reference
cells across the range dimension, γ = 1

2N (
∑N

k=1 x(k) +∑2N+2G+1
k=N+2G+2 x(k)). The underlying issue with many CFAR

techniques, including CA-CFAR, is the inability to retain a
satisfactory performance in the presence of other targets in the
reference cells. This is particularly a problem if the number of
Doppler bins, M , is small as auxiliary targets will often end
up in identical bins due to poor resolution.

A. Neural network training and processing

In order to increase the Doppler resolution beyond the basic
M bins a machine learning approach based on neural networks
can be put forward assuming that the maximum number of
targets at a range bin is limited under an established noise floor.
The networks will be trained to take M slow-time samples for
a given range bin and output M + L samples in frequency
domain, L ≥ 2 being an even number. By performing this
operation across all range bins a high-resolution range-Doppler
map D̂ ∈ CM+L×R can in principle be constructed. An
optional tapering function is also presumed incorporated in
the neural network training and the slow-time data fed into the
network is from the middle of the set; with the equivalent slow-
time extrapolation of L/2 samples occurring at both edges.
Tapering functions are useful in reducing sidelobe leakages
but the downweighting of data at both ends also reduces the
amount of effective information which is extracted by the
Fourier transform. In this regard, even a somewhat inaccurate
extrapolation process can still be useful in a radar detectional
system as long as the detection rate improves without a false
alarm rate degradation.
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Fig. 1: Illustration of the data and network structure

To train a neural network for the designated task, we
assume that a set of P slow-time data matrices corresponding
to different CPIs with M + L pulses have been collected,

S1, ..., SP ∈ CM+L×R. The main parameters such as the
tapering function, M and L are expected to be known and
fixed for a given network. To accurately train the network, the
range bin data which is the input to the neural network and the
Doppler output profile should contain various type of signals.
We categorize the two main classes as

• range bin containing targets

• range bin containing only noise.

Noise-only bins constitute learning with respect to the noise
floor. In addition to that, range bins with targets should con-
tain multiple targets at different randomly selected velocities;
training on up to two targets normally leads to satisfactory
outcomes with well-generalized networks as will be shown
later and was demonstrated in [8].

To construct the database for network training we first
curtail the slow-time matrices from M+L pulses to M pulses
by only retaining the M middle values, S∗l = Sl(:, L/2 :
M + L/2) ∈ CM×R, l = 1, ..., P . Both the full Sl and
the downsized S∗l slow-time matrices are normalized by the
Frobenius norm of the reduced matrix, S̄∗l = S∗l /||S∗l ||F
and S̄l = Sl/||S∗l ||F . The objective is to reduce the upper
dynamic range and the corresponding range-Doppler map
generated from S̄l, incorporating any tapering, is denoted by
R̄l ∈ CM+L×R. In the next step, a random range bin
r is selected and M complex-valued samples are extracted
s = S̄∗l (:, r) alongside the reciprocal M +L complex Doppler
profile samples from r = R̄l(:, r). The input s and output r for
a given range bin is complex valued and to utilize real valued
neural networks the data is split in two, a real and an imaginary
part, s̃ = [<(s), |=(s)] and r̃ = [<(r), |=(r)]. As it will
be shown, this can serve quite well and does not necessitate
the use of complex valued networks [11]. Before passing
on to the neural network, the input data for each range bin
must further be normalized and for this we utilize maximum
absolute normalization. The 2M samples are normalized by
the largest absolute value among them,

T = max
(
|s̃|
)
. (2)

The input x to the neural network is thus defined as x =
[ 1T s̃ T ]. The largest absolute input value to the network
(excluding T ) will thus always equal one while the lowest
figure remains undefined. The normalization factor T is also
fed into the neural network to incorporate rescaling in the same
learning procedure. Notice that the overall structure therefore
becomes quite different from the one of [8] as the network is
now given the additional responsibility to output the Doppler
profile with correct calibration. The overall process can be
described through r̃ = f(x) where f() corresponds to the
fully-connected feedforwarding network neural network as a
function with f : 2M + 1 → 2(M + L). The process is
depicted in figure 1 and each node is assumed to utilize the
tanh activation function. For the training process, multiple
samples from arbitrary range bins should be taken, however,
an important objective must be to preserve the false alarm level
in the process. It is therefore important that the network learns
to recognize instances of noise and thereupon only outputs
transformed variants of noise. Weighting can be utilized to
accomplish this, where the training database encloses a greater
occurrences of range bins only consisting of noise.
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Normalization of slow-time data, first collectively across
the matrix, and then per range bin plays a key role for
successful training of the network and the ability to transform
slow-time data into frequency domain. The performance of the
trained networks will nevertheless depend on several factors
such as the size of the database, the depth and width of the
neural network and not least the choice of L. Training on a
neural network with the size of at least two hidden tanh layers,
one linear output layer and three to five times the nodes in
each layer as the number of output entries generally results in
satisfactory convergence and applicable performance. As L is
increased, the convergence will eventually start to degrade as
the network may start to generate an inflated noise floor level
and extrapolate at incorrect frequency bins mistaking noise
for potential targets. Detailed examples of these aspects are
provided next.

III. SIMULATION EXAMPLES

In this section we present a number of examples and
simulation results to concertize how the presented concept can
be put to use and what type of detectional advantages can
be expected. For the simulated training example we assume
a radar setup with 1000 simulated range bin. 30 targets are
randomly situated within this region while another 20 targets
are placed in the same range bins as already occupied by others
(i.e. up to two targets per range bin). The target velocity is in
all cases randomly determined between -75m/s and 75m/s. The
targets fluctuate randomly from dwell to dwell but otherwise
retain the power level with the single pulse SNR varying
between -25dB to 30dB. The targets are also assumed to spread
across both neighboring range bins with sidelobes of -20dB.
With a probability of 0.5, a target spread is modeled where an
adjacent range cell is instead modeled as an independent target.
The Chebyshev window with 100 dB of sidelobe attenuation
is applied in all instances before the Fourier transform. Figure
2 illustrates such a simulated range-Doppler map with the CPI
interval of M = 6. This exact example was not used for
training but represents a typical range-Doppler map and the
corresponding slow-time data from random range bins would
constitute parts of the input for the training database. In this
regard, figure 3 shows the range-Doppler map for the same
set but assuming M = 10 which would designate the output.
By comparing these two figures it is apparent that even with
two additional data samples the Doppler spread is narrower
permitting a more accurate Doppler placement.

Several neural networks were trained assuming M = 6
or M = 12 and varying L from 2 to 6 (8 for M = 12) with
training over 500000 epochs using the scale conjugate gradient
algorithm. For each training session, 50000 arbitrary profiles
were collected only containing white Gaussian noise from
randomly generated 504 range-Doppler maps while another
10000 profiles contained noise and targets with varying SNR.
A larger ratio, such as 5:1 between the categories, turns out
to be an important factor for proper handling of noise-only
range bins. The data was put to use for training as a single
batch. The fully-connected feedforwarding network contained
two hidden layers with 5× 2× (M + L) nodes in each layer
corresponding to five times the nodes as the number of inputs
and the two times factor accounting for the real and imaginary
parts. The maximum value of T achieved during he training
process was determined to be 0.22.

A. M=6

The error rates after training for M = 6 are given in table
I1. Also provided on the right is the average relative error norm
between 100 randomly range-Doppler images when the learned
network was fed untrained simulated data and compared with
images assuming full availability of M + L pulses. From the
table, it is evident that as L increases the approximation starts
to degrade; this should be expected as the network may start to
assume noise for targets while extracting weak targets based on
very few pulses is otherwise a challenging task. Nevertheless,
the approximation is reasonable for small values of L.
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Fig. 2: R-D map for training and evaluation M = 6

Range-Doppler map, assuming M=10
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Fig. 3: R-D map for training and evaluation M = 10

Range-Doppler map from NN, M=6, L=4
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Fig. 4: R-D map from neural network, M = 6, L = 4

L Training error Relative error test images
2 2.84 · 10−8 0.010

4 1.69 · 10−7 0.032

6 4.78 · 10−7 0.071

TABLE I: Performance evaluation for M = 6

As an illustrative example, by taking the same M = 6
pulses employed for figure 2 and feeding them through the
trained network for M = 6 and L = 4 returns the range-
Doppler map shown in figure 4. Visually, the result is very
similar to figure 3 generated from a full set of 10 pulses
and all the targets exhibit a comparable restricted Doppler
spread. The relative error norm between the two images ||RF−
RNN ||F /||RF ||F comes to 0.0037 where RF corresponds to
the image generated from complete set of 10 pulses where
RNN reflects the image generated from trained neural network.
The small error norm and the visual similarity demonstrating
clear benefits for confined Doppler resolution enhancement.
Nevertheless, to fully characterize the performance from neural
networks detail simulations need to be carried out with respect
to probability of detection (PD) and false alarm rate (PFA).

In a radar detectional context, the most important properties
of range-Doppler maps are linked with the ability to detect tar-

1The trained neural networks are available for download from:
https://doi.org/10.6084/m9.figshare.14540232
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gets. To investigate the performance of trained neural networks
we consider two different scenarios. For the first scenario,
only a single target is simulated in the full range-Doppler
map, permitting a careful characterization of individual target
detection and false alarm rate in white noise at different SNRs.
CA-CFAR is employed for detection with N = 3 guard cells
and G = 8 reference cells on both sides of the sliding window.
The detection threshold is set at K = 12dB and a clustering
of targets is performed if positive detection occurs due to
target spread in either Doppler or range. Targets are only
grouped together if there is a consecutive set of detections
without any gaps. Probability of detection is defined as the
number of correctly detected targets relative to the total number
of simulated targets after grouping while false alarm rate as
the number of incorrectly detected targets in relation to total
number of tests. The evaluation was carried over 450 new
range-Doppler maps representing about 4.4 millions CFAR
tests.
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Fig. 5: Probability of detection, single target, M = 6
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Fig. 6: False alarm rate, single target, M = 6

The PD curves are depicted in figure 5 and it is evident
that the application of trained neural networks improves the
system’s capacity to detect targets. Starting from M = 6, the
neural network for M = 6, L = 2 (red curve) manages to
approximate the same performance as if the radar had utilized
8 full pulses (black dotted). These two curves overlap perfectly
and the improvement is consistent throughout the SNR range.
The identical situation can be observed for the cases of M =
6, L = 4 (green curve) and M = 6, L = 6 (magenta curve).
Although the PD performance is very good, an enlarged L
does come at the expense of a higher false alarm rate as can
be observed in figure 6. The false alarm rate is comparable
to the standard case of M = 6 for M = 6, L = 2 but is
marginally increased for L = 4. With L = 6, the increase
in the false alarm is more noticeable and one would need to
weight the trade-off between the ability to detect more targets
at the expense of a higher false alarm rate.

The curves in figure 5 provide the detectional capability
if the range-Doppler map only contains a single target. In the
second simulation scenario, 50 targets were randomly placed in
the range-Doppler map, as described for the training process,

to investigate the impact of closely spaced targets. For the
evaluation, all 50 targets had the same SNR. In this regard,
figure 7 provides the CA-CFAR detection rates which evidently
also improve with neural networks. Notice that the PD never
exactly reaches 1 as with random target placement there always
will be targets close to each other in range and with a velocity
resulting in identical Doppler bins. With better resolution in
Doppler the probability of the targets ending up in the same
velocity bin diminishes and this advantage remains effective
even at high SNR values. Although the extrapolation of e.g.
only two pulses may initially seem modest, the impact of this
can still be compelling and corresponds to one third additional
data which can be critical for radars operating with stringent
timing and transmission constrains.
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Fig. 7: Probability of detection, multiple targets, M = 6

B. M=12

The simulations from the above section were replicated for
the case of M = 12 trained networks. The comparable error
rates are given in table II and exhibit much better training
efficiency as more data is initially available. The final PD

curves can be examined in figure 8 and the PFA plot in figure 9
for a single target scenario. As with the previous case, the PD

improvement of the neural network with M = 12 and L = 2,
L = 4, L = 6 or L = 8 is in line with if the radar had full
access to, respectively, either M = 14, 16, 18 or 20 pulses. The
networks thus exhibit good ability to extract weak targets. As
a trade-off, the false alarm rate increases with greater values
of L but two to four pulse extrapolation is a very viable option
without any significant degradation of the system’s PFA level.
In contrast to the earlier situation of M = 6 the increase in
the false alarm now occurs at high SNR values and can mostly
be attributed to the fact the Doppler target spread at large
SNR breaks up and no longer results in consecutive CFAR
detections, an example of this is provided in figure 10 where
one can also notice the elevated noise floor. This detection
issue can potentially be solved by more advanced clustering
algorithms or by not applying the neural networks for range
bins where targets already stand out with high SNR. These
aspects are though not discussed further in this text.

L Training error Relative error test images
2 1.22 · 10−9 0.008

4 4.87 · 10−9 0.014

6 2.09 · 10−8 0.032

8 6.50 · 10−8 0.060

TABLE II: Performance evaluation for M = 12

Altogether, the result indicate the ability of appropriately
designed and trained neural networks to extract information
from available slow-time data. As an alternative interpretation,
the proposed networks can be seen as a technique to mitigate
the impact of tapering functions on the signal edges.
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Fig. 8: Probability of detection, single target, M = 12
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Fig. 9: False alarm rate, single target, M = 12

C. Visual exemplification

The above sections have emphasized the CA-CFAR de-
tection capabilities of range-Doppler maps where the profiles
are generated through trained neural networks. In other ap-
plications, such as micro-Doppler extraction, target imaging
or recognition. detection in itself is not of primarily interest.
The proposed networks have a potential usage in these circum-
stances as an alternative to the Fourier transform for generation
of high-resolution images. To demonstrate this, a series of test
signals were generated over 100 simulated range bins. On the
left hand side, two targets were incorporated in each range
bin, the first target with a sweeping velocity and decreasing
power while the second target exhibits constant zero Doppler
but increasingly energy level. In the second half of range bins,
a third target was introduced (even though the network was
not trained under more than two targets).

The left image in figure 11 depicts the standard range-
Doppler image with M = 12 while the middle image assumes
full availability of M = 18 pulses. The right side shows
the result from the trained network for M = 12, L = 6.
The targets are easily identifiable and highly concentrated
in Doppler for all velocities and intensities compared to the
original image with only M = 12 pulses. This example
is provided for illustration purposes only but demonstrates
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(a) M = 12

Range-Doppler map from NN, M=12, L=8
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(b) M = 12, L = 8

Fig. 10: Excessive extrapolation example for a single target. On
the right side the target Doppler spread results in unconnected
CFAR detections (crossed).

Range-Doppler map, M=12
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(a) M = 12

Range-Doppler map, M=18
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(b) M = 18

Range-Doppler map from NN, M=12, L=6
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(c) M = 12, L = 6

Fig. 11: Illustration of image regeneration

how higher resolution range-Doppler images can easily be
generated by taking advantage of small neural networks even
though the CFAR process may yield suboptimal outcomes.

IV. CONCLUSION

This paper proposed the application of small neural net-
works to generate high-resolution Doppler profiles of radar
signals. In a data starved environment, a radar may only be
able to transmit a limited amount of pulses, resulting in a low
Doppler resolution and restricted ability to distinguish between
closely spaced targets. It was shown that fully-connected
feedforwarding neural networks can successfully be trained
to take slow-time time-domain data as an input and return
high-resolution frequency profiles as output. The detectional
performance was shown to be equivalent to the case of full data
availability. As a trade-off, the process can potentially result
in a higher false alarm rate, though for moderate Doppler bin
resolution enhancement the original levels can be conserved.
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