PaZoe: classifying time series with few labels
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Abstract—Semi-Supervised Learning (SSL) on graph-based
datasets is a rapidly growing area of research, but its application
to time series is difficult due to the time dimension. We propose
a flexible SSL framework based on the stacking of PageRank,
PCA and Zoetrope Genetic Programming algorithms into a novel
framework: PaZoe. This self-labelling framework shows that
graph-based and non-graph based algorithms jointly improve
the quality of predictions and outperform each component taken
alone. We also show that PaZoe outperforms state-of-the-art
SSL algorithms on three time series datasets close to real
world conditions. A first set was generated in house, taking
data from industrial graded equipment in order to mimick DC
motors during operation. Two other datasets, which include the
recording of gestures, were taken from the public domain.

Index Terms—temporal data, semi-supervised classification,
PCA, PageRank, symbolic regression

I. INTRODUCTION

The interest of classifying temporal data originates from
many real-world problems, among which classification of
failure types in industrial equipment, gesture recognition or
even brainwave recognition in EEG (electro-encephalogram)
data [1], [2], [3], [4]. The difficulty of time series classification
arises from the fact that each event is associated with a
sequence of observations over a period of time, and not with
a single observation as in tabular data classification. In the
context of anomaly detection and prediction, the situation
is exacerbated by the rarity of the events of interest - e.g.
equipment failures - which is fortunate from a cost perspective,
but problematic from the learning point of view, because the
resulting imbalanced data used for training hamper accurate
predictions.

Moreover, time series classification is even harder with
extremely few labels, a common problem in Machine Learning
(ML) addressed by Semi-Supervised Learning (SSL). SSL
algorithms have shown good performance on graph-based
datasets such as citation networks [S5], [6] and on images
datasets [7], [8]. However because of the time correlation,
applying common SSL algorithms to time series is difficult. To
compensate, some SSL algorithms are based on complicated
neural network models, developed explicitly for this type of
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data [2], [9], [10]. These models are not always responding to
the rising demand for interpretability which has been the focus
of considerable research [11], mostly concerned with the inter-
pretation of “black-box” models such as deep neural networks
and, to a lower extent, random forests [12]. Interpretability can
be enhanced by symbolic regression (SR) algorithms, which
link the input features to the target with explicit mathematical
formulae, thus providing “model-based” interpretability. SR is
mostly treated from a genetic programming perspective [13],
although attempts from a more traditional ML angle have been
made [14]. However, there are very few works on SR in semi-
supervised mode [15].

This paper brings the following contributions: we propose
a new framework called PaZoe based on the stacking of
two recent algorithms that have shown good performances
in previous work, namely PageRank & PCA [16] (enabling
self-labelling [17]) and Zoetrope Genetic Programming [18],
and we adapt this framework to sensor data; we demonstrate
that our framework outperforms the state-of-the-art linear and
neural network algorithms for SSL in terms of accuracy on
different time series datasets; in addition to public domain
gesture datasets, we generated a realistic dataset based on a
DC motor for the classification of the type of motor imbalance
at different rotation speeds.

II. CONTEXT

A. Problem and notations

Let X = [X;]7, € R™*? be the matrix of input features,
with dimension d and total number of observations n. Then let
{C1,...,Cy} be the set of k classes, and Y = [Y;]™_, be a label
matrix where Y; = (Y ;)h_,, such that ¥; ; = 1 if X; € C;
and Y; ; = 0 otherwise. Y is composed of two parts: a labelled
one of size n;, and an unlabelled one of size n,,, typically for
SSL n; < n, and Y; being the null vector for all unlabelled
data. We also define the following graph-based setup which
will be used in the sequel: A = [A;;]//L, is an adjacency
matrix, D = diag(D; ;) is a diagonal matrix with D;, =
2?:1 A; ;. The problem of semi-supervised classification is
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to find an accurate classification result ¥ = [¥;]7_, for Y,

with V; = (Yi’j)?:l, based on both labelled and unlabelled
data where the amount of labelled data is extremely low.

B. Related works

The research in SSL is split into two main areas, according
to the structure of the data. Graph-based datasets display
both node features and a graph structure. Here, the state-of-
the-art (SOTA) algorithms are based on graph propagation
strategy, among which Label Propagation (LP) [19], Graph
Convolution Network (GCN) [5]; Instead, Non-graph based
datasets only have object features, such as pixels for images.
Here SOTA SSL algorithms are based on the application of
semi-supervised regularisation and similarity learning, such as
transductive SVM (TSVM) [7], logistic regression (LR) [20],
K-nearest neighbours (KNN) [8], and GEML [21].

These SSL algorithms have been developed according to the
dataset’s nature. As a consequence, algorithms applicable to
graph-based datasets (e.g. GCN [5], Label Propagation [19])
are not suitable to non-graph based datasets, and conversely
for non-graph based algorithms like LR [20] or GEML [21].
Note that a semi-supervised genetic programming like GEML
is comparable only with linear algorithms and outperforms
them in the supervised regime most of the time.

Finally, all the aforementioned SSL algorithms do not
provide a clear interpretation of the classification results.

In order to address these issues, we propose a combina-
tion of a linear algorithm for graph-based SSL (PageRank
& PCA (PRPCA)) with a non-linear symbolic regression
algorithm, ZGP (Zoetrope Genetic Programming). The inter-
est in PRPCA comes from its applicability to both graph-
based and non-graph based datasets, while ZGP keeps the
classification results interpretable. We show in the experiment
that the combination of PRPCA and ZGP within the PaZoe
framework, significantly increases each algorithm’s individual
performance, and outperforms SOTA algorithms on several
time series datasets.

III. PAZOE FRAMEWORK

In our framework, we assume that any data can be repre-
sented through a graph structure. Since PRPCA outperforms
the linear graph-based as well as non-graph based SSL algo-
rithms, we use it in PaZoe to extend the training set to the self-
labelling regime [17]. Then, we conjecture that the Zoetrope
mechanism in ZGP can extract useful information by training
on PRPCA predictions in a supervised regime. Based on these
assumptions, we combine these two algorithms.

A. PageRank & Principal component analysis (PRPCA)

The main idea of PRPCA is to enrich the adjacency matrix
A by the information of estimated covariance between objects
S € R™ ™. This enrichment allows spreading information
about labelled objects to unlabelled ones. This means that even
in the absence of edge between two objects where A; ; = 0,
we can still spread the information about labels between

these objects weighted by their covariance value. The explicit
classification solution of PRPCA is given by

VY=(I-a(AD ' +6SD)) '(1—a)Y ()

where 6 € (0,1) sets the influence of S on A and o €
(0,1) is the random jump parameter for PageRank. Let us
note that in the normalised Y if (AD~!+3dSD™!) is a
stochastic matrix, equation 1 is an explicit PageRank [22]
problem. The classification solution 1 is obtained through the
differentiation of the combination Laplacian regularization',
supervised” and PCA? losses. Note that the computation of the
matrix inversion can be avoided, thanks to numerical iterative
methods [16]. PRPCA presents the following interesting and
practical features: first, it has an explicit classification solution
(Eq. 1) enabling the interpretation of the object’s values in
each column of Y as the value of its importance in that
particular class/column, through the PageRank model; second,
it can work in a distributed regime, handling the high amount
of unlabelled data without memory issues; and finally, it can
support the online learning regime, appending data from a
new observed sensor as a new object in a graph and labeling
it through its neighbours.

B. Zoetrope Genetic Programming

The Zoetrope Genetic Programming (ZGP) algorithm is
a genetic programming approach for symbolic regression
(GPSR) which iteratively evolves mathematical formulae to-
wards the one that best fits the data. The particularity of
ZGP among symbolic regression methods lies in its formula
construction, which allows efficient computations and prevents
models to overgrow and become complex, a common draw-
back in GPSR. This construction mechanism is illustrated
in Figure 1 and works as follows. First, a number m, of
elements (F1,...,E,,, ) are randomly selected among input
features (resp. random constants), with a 90% (resp. 10%)
probability. Then, these elements undergo m,, ‘“maturation
steps” or “stages”, which consists in applying the fusion
operation

f(Ei, Ej) =7 -0p;(E;, Ej) + (1 — 1) - opy(E;, Ej),

on couples of elements, where op,, i = 1,2 are operators*
uniformly chosen in a predefined set O, and r = U|0, 1]; the
result of f(E;, E;) replaces either E; or E;. At the end of
the m,, stages, the matured elements — called “zoetropes”
and denoted by (Z1,...,Z,,, ) — are linearly combined via
multinomial logistic regression penalized by Elastic net [23];
this last step allows to jointly select the most relevant zoetropes
and optimally estimate their weights. The operator set can be
adapted to the problem at hand, but is typically taken as O =
{+,—, X, /, cos, sin, sqrt}.

Laplacian regularization: Z;‘L:I A;, J||YZ - YJH%
2Supervised loss: 37, ||V; — V3|3

3PCA loss: || X V|3

“In case op; or op, is unary, only F; is taken into account
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Fig. 1. Illustration of ZGP’s model construction with me = my, = 3. For the
sake of readability, the third fusion, generating (E” 2, E”3) from (E}, EY)
is not represented. Note that Z3 = E” 3 as no element is left for a fusion.

Genetic programming considers models as individuals of a
“species”, and evolves them with random perturbations (mu-
tations) and by mating pairs into new individuals (crossover).
ZGP’s mutation and crossover are also nonstandard in GPSR:
the mutation consists in selecting couples of models, and
replace the worst one with a “mutant” of the first one, while
the crossover consists in selecting the best and worst in a pool
of m; models, and randomly propagate elements and fusions
of the best to the worst model. Note that the “worst” and
“best” models are defined with respect to their accuracy on
the training set. At the end of each iteration, all the models
are evaluated on the validation set, and the best ever is stored.
Also, like PRPCA, ZGP can work in distributed regime. For
the complete description of the algorithm, see [18].

C. PaZoe strategy

Our PaZoe framework is given in Algorithm 1 and consists
in three main sequential steps:

1) Transforming data into graph structure. For non-graph
based datasets, where no adjacency matrix A is avail-
able, we first generate a synthetic graph structure and re-
trieve A by K-nearest neighbours (KNN) with Euclidean
distance;

2) Labelling the unlabelled data. We then compute PRPCA
based on the input matrix X and the adjacency matrix
A. Predictions generated by PRPCA consider the graph
structure, which could be valuable for stacking with
existing object features X for further training of ZGP.
Also, self-labelling [17] by PRPCA predictions extends
the training set for further ZGP training in the supervised
regime;

3) Classifying and recovering the boundary formulae. We
stack the input data X with the predictions from PRPCA
and feed the augmented dataset to ZGP for supervised
training (where train/test split of dataset is 70%/30%).

This framework is applicable to any kind of data. In order to
adapt it to temporal data obtained from sensors, we propose
to modify step 1 of PaZoe as follows: we first separately train
a KNN algorithm and generate different adjacency matrices
for each type of features, e.g. the magnetometer’ and the
gyroscope’® in the DC motor dataset (see next section for
details); then we linearly combine these adjacency matrices

SXmga € R"*dmga where dmga is dimension of magnetometer
"Xdps € R™*ddps where dgps is dimension of gyroscope

into the final one. Similarly in PRPCA, we compute the
covariance between objects separately for each feature.

The outline of PaZoe with the modification for sensor data is
illustrated in Figure 2. The PRPCA part of the code is publicly
available through this link’. As for ZGP, we used an open
source version of the proprietary algorithm, which is still under
testing and has not been released yet.

1) 2) PRPCA

PRPCA predict

4) ZGP Predict

Fig. 2. PaZoe sequence: 1) Generation of graph structure; 2) Self-labelling
by PRPCA; 3): 3a) Stack X with PRPCA predictions; 3b) ZGP training; 4)
Final predictions from ZGP. Note, X and units therein, refer to the dc motor
dataset.

INPUT: XA, Y, a, §;

INITIALIZE: )
X =XT -1y 9XTvie(1,...,n); § = L5
IF: A= NaN:

A= KNN(X)
Y=(I-a(AD"'+65D7)) (1 -a)Y
X = stack(X, Y)
V = ZGP(X,Y,my, mi, me, My, my)

Algorithm 1: PaZoe

IV. EXPERIMENTS

We apply the PaZoe framework on three time series datasets,
the first generated for this work, the others obtained from the
public domain. DC motor dataset (RPM) — generated with
six classes of imbalance failure on a real motor, by collecting
data from a sensor tile (see next section); UWaveGesture
(UWave) [4] — with eight classes of gestures from (z,y, 2)
accelerometer features; Gesture WlImote (WII) [3] — with
ten classes of gestures from (z, y, z) accelerometer features by
Nintendo Wiimote.

A. DC motor data collection

In order to profit from a real dataset on motor failures, we
conducted our own experiment to simulate anomalies of DC
motors in a production environment. These are later used as
classification targets with labelled data generated for training.
Motor axis imbalance were generated by loading weights onto
a disk plate mounted on top of the motor at varying distances

7https://github.com/KamalovMikhail/PaZoe
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from its axis. The dataset was obtained with industrially graded
equipment made of a STMicroelectronics (STM) acquisition
board®, a STM SensorTile with three sensors - accelerometer,
magnetometer and gyroscope - and a SD card for data storage.
The three components (z,y,z) of each sensor signal were
acquired at the default rate of 20 Hz, kept throughout. We
recorded three rotation speeds, 620, 420 and 220 RPM. We
chose these speeds to show how the performances tend to drop
the lower the speed, making the discrimination of anomalies
more difficult.
The three sensor quantities and units are as follows:

o Accelerometer (mg) - acceleration values in units of mg,
where g = 9.81 m/s? is the gravity acceleration;

o Magnetometer (mGa) - generally used for tracking of
moving objects - with values in mGa, where ’Ga’ means
gauss and 1 gauss = 10747,

¢ Gyroscope (DPS) - measures rotations in DPS (deg. per
seconds), e.g., one needs to convert to rad/s if time or
geometric calculations are needed.

The duration of each experiment is close to one (~ 1)
minute.’

B. Data utilization strategy

We used the following train/test split strategy for all of these
datasets: 20 labelled objects for each class for training and the
rest for testing. Note that all these datasets are balanced, e.g.
the number of objects in each class is similar. This strategy
is standard for SSL learning algorithms [5], [19]. Also, we
have to mention that for the DC motor dataset, we considered
objects as sensor quantities (e.g. accelerometer, magnetometer,
gyroscope) at each moment in time (recording individual data
points). In other words, the length of time series (I) for the
DC motor dataset was equal to [ = 1. In practice, it allows us
to check the motor’s state and signal imbalance failures at any
moment. This is because the position of the motor is stable
but, at a successive time instant it might not be.

Since WII and UWave datasets have only observations from
accelerometers, we considered an object as a time series
with length equal to the motion’s length (e.g. following the
time evolution of the three different coordinates, (x, y, 2)
during the complete gesture recording). These three datasets,
summarised in Table I, and the code for their processing are
available through the provided link!°. Note that the number of
observation for the RPM dataset slightly differs depending on
the speed, due to the presence of missing values (especially
at the end of each observation time).

C. Results

For a fair comparison, we used three types of algorithms:
(1) SSL graph-based such as LP, PRPCA and GCN (is a

8Nucleo G431RB ST L6230 with a GBM2804H brushless motor

9Each datapoint has a timestamp dd/mm/yyyy hh:mm:ss.xxx, with differ-
ences between adjacent points from 2 to 5 ms around the nominal 50 ms. As
the time scale is approximately uniform, the absolute value of the time can
be safely ignored and timestamps swapped for indexes as necessary.

10https://github.com/KamalovMikhail/PaZoe

TABLE I
DATASET STATISTICS

620,420,220 RPM  UWAVE Wil
n No. observations ~6100 4478 1000
n; No. labels 120 160 200
n;/n Ratio of labels ~ 1.9% 3.6% 20%
Sequence length 1 315 326

k No. classes 6 8 10
d No. features 9 315 326

neural netowrk); (2) SSL non-graph based, such as LR and
KNN; and (3) supervised algorithms such as SVM, ZGP and
the combination of algorithms such as PRPCA & LR (PaLR)
and PRPCA & SVM (PaSVM). For each of these algorithms,
we took the best hyperparameters defined in their respective
works and for PRPCA we used o = 0.9, § = 1073. We
use accuracy as the performance metric since all datasets are
balanced. We report the average accuracy on the test set, taken
over 20 random splits (k-folds strategy).

The results of PaZoe on the DC motor dataset obtained
with various features combinations are presented in Table II.
It shows that the best classification accuracy is achieved by
using magnetometer (mGa) or gyroscope (dps) with respect
to RPM. Since magnetometer (mGa) and gyroscope (dps)
separately provide a high classification accuracy for the DC
motor dataset, we use the best of them for each RPM (ie.
dps for 620, 420 rpm and mGa for 220 RPM) to train the
rest of the algorithms. The results of PaZoe compared with all
the other algorithms on the DC motor dataset are shown in
Table III, along with the performance on the WII and UWave
datasets. Several comments can be made on those results: first,
PRPCA clearly outperforms the other SSL algorithms on all
three datasets; second, combining PRPCA with a supervised
classification algorithm only leads to an improvement with
ZGP (PaZoe); third, PaZoe considerably outperforms its sepa-
rate components (PRPCA, ZGP) as well as the rest of the SSL
and supervised algorithms on all three datasets, even with only
one sensor (accelerometer) in the gesture datasets.

TABLE I
ACCURACY FOR THE DC MOTOR DATASET WITH VARIOUS FEATURE SETS

RPM  Algorithm  dps, mGa, mg mGa mg dps  mGa,dps
PRPCA 61.2 192 442 716 68.2
ZGP 48.9 162 357 60.1 63.2
620 PaLR 18.4 172 195 429 18.8
PaSVM 46.7 170 412 658 66.4
PaZoe 65.6 97.0 96.8 98.8 79.3
PRPCA 38.8 60.8 283 66.2 51.8
ZGP 62.4 646 292 623 65.2
420 PaLR 18.0 287 227 352 17.9
PaSVM 18.7 51.1 260 525 442
PaZoe 63.5 962 952 978 67.2
PRPCA 30.6 663 20.1 295 37.2
ZGP 20.2 185 168 26.1 27.1
220 PaLR 18.5 164 17.1  19.0 17.4
PaSVM 19.8 612 188 165 33.0
PaZoe 36.2 942 906 93.1 44.8
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TABLE III
ACCURACY FOR DC MOTOR, WII AND UWAVE DATASETS

Dataset 620RPM  420RPM  220RPM \ WII  UWave
PRPCA 71.6 66.2 66.3 67.8 70.1
LP 31.2 17.2 16.6 15.2 12.4
KNN 28.6 33.9 60.1 23.7 58.8
GCN 16.9 21.6 18.3 16.7 18.3
ZGP 60.1 62.3 26.1 14.6 17.4
LR 29.7 27.9 16.8 52.9 55.8
SVM 64.1 38.9 25.6 433 68.3
PaLR 429 35.2 16.4 349 62.8
PaSVM 65.8 52.5 61.2 37.3 69.1
PaZoe 98.8 97.8 94.2 71.8 72.3

V. CONCLUSIONS

The problem of label scarcity in data gathered from in-
dustrial equipment under working conditions is addressed by
generating labels via an efficient SSL algorithm (PRPCA).
Its outcomes are then fed into the GPSR based algorithm
ZGP, which provides interpretable predictions expressed by
a mathematically explicit formula. The working of the two
algorithms have been briefly explained and their joint use
described as the PaZoe framework. It has been shown that
the use of this stacked framework provides a combined per-
formance which overcomes the two algorithms individually.
These results were obtained on realistic data, partly generated
for this purpose with industrially graded equipment, partly on
sensor data available from the public domain. We observe that,
similarly to other SSL algorithms (like LP, GCN, KNN) PaZoe
does not assume any kind of data distribution (or even require
the data to be i.i.d), while it performs better than those.

In terms of potential future work, we want to evaluate
PaZoe for handling the case when we lose/add some fea-
tures (channels) from a sensor tile during the training. In
particular, we will test the use of pre-trained ZGP models
when adding/removing a sensor or when handling data streams
(e.g. online learning). Also, we want to develop a non-linear
distributed version of PRPCA to improve the self-labelling
for PaZoe. Finally, for practical implementation and simpler
parametrisation, it would be interesting to directly include
PRPCA into ZGP instead of running the two algorithms
separately in sequence.
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