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Abstract—The accuracy of angle of arrival (AOQA) estima-
tion with an antenna array, depends on the antenna elements
positions. In this paper, we introduce a novel method for
optimizing the antenna elements position that minimizes the
AOAs estimation error in the case of an unknown number of
sources and a single array realization (snapshot). The method
utilizes a deep neural network (DNN) for estimating the number
of sources and their AOAs for a given antenna elements positions,
and minimizes the estimation error by jointly optimizing the
antenna positions and the DNN parameters. The use of the DNN
estimator in this case, enables to calculate the gradient of the
estimation error with respect to the antenna elements position,
and thus to minimize the estimation error with respect to the
antenna positions by gradient descent. The proposed approach
is unique because it determines the antenna array configuration
that explicitly minimize the AOAs estimation error, while other
reference methods use an optimization objective that is implicitly
related to the AOA estimation error. We show that the proposed
optimization method attains a significant performance advantage
in the RMSE of the AOAs estimation compared to reference
antenna configuration optimization methods.

I. INTRODUCTION

Estimating the angles of arrival (AOAs) of an unknown
number of multiple sources transmitting unknown signals with
a single array received signal (single snapshot) is a challenging
problem with various applications such as localization, radar,
sonar, anti-jamming and wireless communication [1]. A deep
neural network (DNN) approach for estimating the AOAs
in this case [2] has shown to attains superior performance
to signal processing methods due to several reasons. First,
good model order determination requires multiple realizations
(snapshots) [3]. Second, even if the model order is known,
the maximum likelihood (ML) estimator is intractable when
the number of sources is large, and feasible approximate ML
estimators such as alternating projections (AP) [4], IQML [5],
EM [6], and Orthogonal Matching Pursuit (OMP) [7] have
performance degradation with respect to ML. Third, super
resolution methods for AOAs estimation, such as MUSIC [8],
ESPRIT [9], and MVDR [10], require multiple realizations to
perform well.

The AOAs estimation performance of an antenna array
dependents not only on the estimation method but also on
the antenna elements positions. A standard antenna array
with uniform spacing of half a wavelength between antennas
provides unambiguous AOA estimation. However, the angular
resolution is proportional to the array aperture, hence with
a small number of antenna elements the standard uniform
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spacing attains a short aperture with relatively low angular
resolution.

One approach for optimizing the antenna elements position
is based on the array’s beam pattern, which is obtained with
the a Bartlett beamformer [11]. In this approach, the antenna
elements positions are optimized to reduce the beam-pattern
maximal energy outside of a specified main-lobe width [12]-
[15]. The main-lobe width determines the desired angular
resolution, and minimizing the side-lobes energy mitigates
angle ambiguity issues as well as improves the discrimination
between multiple sources. This criterion is not optimal in terms
of AOA estimation, since it is not derived directly from the
AOAs estimator, and therefore, does not optimally minimize
the estimation error. Furthermore, the main-lobe width is pre-
determines, and not part of the optimization, thus the important
tradeoff between the main-lobe width and side-lobe levels is
not optimized.

Other approaches for optimizing an array configuration are
coprime arrays [16]- [17], and nested arrays [18]. In these
approaches, the antenna elements have a unique non-uniform
spacing, such that the array spans a large aperture (and thus has
high resolution) with a large number of degrees-of-freedom for
AOA estimation. These array configurations can provide better
AOA estimation accuracy than an array with uniform spacing.
However, they are not optimized to explicitly minimize the
AOA estimation error in the case of multiple sources and a
single received array realization (single snapshot).

In this paper, we introduce a novel method for optimizing
the antenna elements position that minimizes the AOAs esti-
mation error in the case of an unknown number of sources
and a single array realization (snapshot). The method uses a
DNN to estimate the number of sources and their AOAs from
the received signal, which is a function of the antenna array
configuration. The DNN parameters and the antenna elements
positions are jointly optimized to minimize the AOAs estima-
tion error, over a set of examples. The use of the DNN enables
to calculate the gradient of the AOA estimation error with
respect to the antenna’s positions via back-propagation. As a
result, the major advantage of using a DNN for optimizing the
antenna array configuration is that it enables to determine the
antenna elements positions that explicitly minimize the AOA
estimation error, while in other methods, the optimization
objective is implicitly related to the AOA estimation error. The
results show that the proposed array configuration optimization
method attains better AOA estimation performance than the
performance of a DNN AOA estimator with other optimized
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reference array configurations.

II. PROBLEM DEFINITION

We consider an array of /V linearly spaced antenna elements
that are receiving signals from multiple point sources at
different angles. The received array signal can be expressed
by

m)Sm + v, (D)

HME

where v is the noise vector, M is the number of unknown
sources, Sy, 0, are the unknown complex signal coefficient
and the angle of the m-th source, respectively, and

5
a(f) = : , )
5"

z1sin(0)

Tz nsin(0)

is a steering vector for an angle of arrival 6, where \ is the
wavelength, and z,, is the n'* antenna position with respect
to the linear array center point.

The number of sources and their AOAs are estimated from a
single realization (snapshot) of the received signal, y, which is
a function of the antenna elements positions, x1, .., zx. The
problem at hand, is to find the antenna elements positions
that yield the maximal probability of accurate detection of the
number of sources, and the minimal mean square error (MSE)
of the AOAs estimation.

III. ANTENNAS CONFIGURATION OPTIMIZING

For estimating the number of sources and their AOAs,
we use a DNN because of two important reasons. First,
the DNN has showed higher probability of accurate number
of sources detection, and lower AOAs MSE compared to
other reference signal processing methods [2]. Second, and
even more importantly, the DNN enables to minimize the
estimation error with respect to the antenna positions, by back-
propagating the estimation error, via the DNN, to the received
signal, as will be further explained in the following.

A block diagram of the antenna configuration optimization
method is shown in Fig. 1. A received signal, y, is generated
per given antenna configuration, random sources signals, S,
and random AOA:s, 6,,,. The received signal is fed into a DNN
that estimates the number of sources and their AOAs. The
estimation error per each received signal is calculated (with the
use of ground truth of the AOAs), and the antennas positions
and the DNN weights are optimized to minimize the estimation
error over a large set of received signals.

The neural network architecture that was used to estimate
the number of sources and their AOAs is depicted in Fig. 2.
The DNN was designed for an array of 16 antennas (N = 16),
and for estimating up to 4 sources (M < 4). It is straight
forward to modify the same DNN architecture for different
number of antennas, and different maximal number of possible
sources. The input to the network is the array received signal
of 2NN values, which are the real and imaginary components
of the array response, y. Following the input layer there
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Fig. 1. Block diagram of the antenna elements positions optimization method.

are 8 fully connected (FC) layers, each followed by batch
normalization [19] and ReLU nonlinearity. The number of
neurons in each layer is indicated next to each FC layer in
Fig. 2. Following these FC layers the network splits into five
different FC paths. The upper FC path that is shown in the
figure, outputs the classification of the number of sources.
It has a Softmax [20] layer at the end that outputs four
probabilities, ¢y, ¢1, ¢2, 3, which are the probabilities of each
one of the four classes. Each class corresponds to a different
number of sources, between 1-4. The other four paths are the
AOAs estimations for each of the four classification options.
The estimated number of sources, M , 18 the index of the
maximal Softmax probability, and the final estimated AOAs
are the set of AOAs that correspond to the estimated number
of arrivals.

The estimation error metric, that was used for the opti-
mization, combines the classification and the AOAs estimation
error, and is given by
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where () is the number of examples (scenarios), ¢ is the index
of the example, w is a vector of all the network weights,
x = [v1,..,2n]T is a vector of the antenna positions, 3 is
a weighting factor, L. is the cross-entropy classification error
term given by
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where [c{, .., ¢4, ;] is the classification bits ground truth one-

hot vector', and Ly is the AOAs estimation MSE that is given

'One-hot vector has zeros in all elements except the element that corre-
sponds to the correct classification index, which has value 1
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Fig. 2. The neural network architecture with fully connected (FC) layers,
followed by Softmax for classification of the number of sources (1-4), and
AOAs regression for each one of the classes.
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where éz, and 6, are the estimated and ground truth AOAs,
respectively, of the k' source index and ¢! example index.
The metric in (5) is a bi-directional MSE calculation, that was
chosen to account for the issue of correspondence between
the multiple estimated AOAs and the multiple true AOAs. The
first summation in the bi-directional MSE is the squared error
between each true AOA and its closest estimated AOA, and the
second summation in the MSE is the squared error between
each estimated AOA and its closest true AOA.
The optimization objective can be expressed by
argminJ (w, x). (6)
z,w

We solve the optimization in (6) with stochastic gradient
descent. In each stochastic gradient descent iteration, a batch
of @ new random scenarios of AOAs are produced?, and Q
corresponding received array realizations, y, are generated ac-
cording to (1), with the antennas configuration of the previous
iteration. The DNN outputs an estimate of the number of
sources, M , and their AOAs, ém . éM,l, for each received
signal, and the estimation error in (3) is calculated. Then, the
DNN weights and the array elements positions are updated as
follows

oJ(w,x
W = Wg—1 — Hw% , (D
(w,z)=(wk—1,Tx—1)
and
oJ(w,x
o =y — T2 L®

(w,z)=(wk—1,Tx—1)

2Each scenario has random number of sources, AOAs and signals

where k is the stochastic gradient iteration index, wy, X
are the network parameters and antennas positions at the k*"
iteration, respectively, and p,, p, are their corresponding
update step sizes. We obtain the derivative of the cost function
J(w, x) with respect to x, using the chain rule, as follows

oJ(w,z)  0J(w,x) Oy
ox Oy Oz’

€))

where w can be computed by applying the chain rule on

the network layers, i.e., applying back propagation [21], and
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is a diagonal matrix, with diagonal elements that are given by

_ijZ

An intuitive explanation for the iterative optimization
method which is described above, is that the antennas positions
are updated to reduce the estimation error, and in return, the
DNN parameters are updated, to match the estimator to the
updated antennas positions. It is important to realize that the
use of the neural network as the estimator, enables to obtain
the derivative of the cost function, J, with respect to the
antenna positions, &, which is essential for the optimization.
Using other estimators, such as super resolution methods (e.g.
MUSIC), maximum likelihood estimator, sparsity methods,
etc., would not provide a tractable solution for (8).

The minimization function in (6) is not convex. Although
neural networks are known to reach a good solution even for
non-convex optimization functions, still, the minimization with
respect to the antenna positions may reach a local minimum
point. To mitigate this problem, the optimization method was
initiated with 100 different antennas’ positions configurations
that had random spacings. An individual independent op-
timization was carried out for each pair of initial random
antenna configuration and initial random network parameters
(weights). This resulted in 100 optimized pairs of antenna
configuration and network parameter, from which the pair
that attained the lowest metric in (3), was selected as the
final optimization result. After the optimization was complete,
the selected optimal pair was fixed (“frozen”) and used for
estimating the number of sources and AOAs during inference
time.

y;
Ox;

x 31n(97n)

(an

IV. RESULTS AND DISCUSSION

We trained and tested the proposed antennas’ positions
optimizations method with simulated realizations according
to (1), with 16 antenna elements (N = 16). The number of
sources per each example was randomly selected between 1-4,
with uniform distribution. The complex signals, s,,, in each
example had a phase with uniform distribution in the range
(0,27), and amplitude with uniform distribution in the range
(0.5,1.5). We tested three different distribution for the AOAs
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of the sources, which are detailed below, and optimized the
array configuration for each one of the distribution.

The performance of the proposed array configuration op-
timization method is compared to four reference antenna
configurations. The first, was a uniform linear array (ULA)
with maximal spacing between antennas that provides unam-
biguous AOA estimation. The maximal spacing depends on
the maximal AOA in the test scenario. The second, was a
coprime array [16]- [17], that was composed of two ULAs of 8
elements, that were shifted by 4\, one with respect to the other.
One ULA had 4\ spacing and the other had 4.5\ spacing. The
third, was a nested array [18], that had an 8 elements ULA with
0.5\ spacing, followed by another 8 elements ULA with 4\
spacing. As mentioned in Section I, coprime and nested arrays
are known to achieve good AOA estimation performance
since they span a large aperture with non-uniform spacing
that has a relatively large number of degrees-of-freedom for
AOA estimation. The fourth reference method was the array
configuration optimization method proposed in [12]. In this
reference method, a particle swarm optimization algorithm
was applied for determining the antenna array configuration
that minimizes the maximal side-lobe level in the Bartlett
beamforming spectrum, for seven different target angles that
uniformly span the sources AOA range in each test scenario.
The side-lobe region is the beamforming output that does not
include the main-lobe beam-width.

In the figures below, the proposed optimization method in
Section III is referred to as ’optimized DNN’, the optimiza-
tion based on side-lobe level minimization is referred to as
’optimized side-lobes’, the uniform linear array is referred to
as "ULA’, co-prime array as ’co-prime’, and nested array as
‘nested’.

Each one of the four reference antenna configurations had
a separate DNN estimator for the number of sources and their
AOAs, which was trained and optimized for the individual an-
tenna configuration. The same DNN architecture that is shown
in Fig. 2, was used for the estimator of all reference antenna
configurations. However, individual network parameters were
trained and optimized for each different antenna configuration.
For each antenna configuration, the network was trained with
one million batches of size 1000. The examples in each batch
had random signal to noise ratio (SNR) in the range 20-40 dB.
The performance were tested with 100000 examples, which
were not part of the training set.

Figs. 3-4 show the AOAs estimation RMSE (the square root
of (5)) and the accuracy in the detection of the number of
sources, respectively, of all the tested methods for the case that
the sources AOAs (between one to four sources per example)
had uniform distribution in the range of (—85°,85°). It is seen
that optimizing the array with a DNN for this scenario achieves
a significant performance advantage in the AOAs RMSE with
respect to the reference antenna configurations. As for the
accuracy in the number of sources estimation, the optimized
array achieves modest performance improvement with respect
to the reference methods.

Fig. 5 presents the RMSE performance of all the tested
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Fig. 3. AOAs estimation RMSE performance for AOAs uniformly distributed
in (—85°,85°). Number of sources per example was random between one
to four.

methods for the case that the sources AOAs had a uniform
distribution in the range (—50°,50°), which is a narrower
AOA range than in Figs. 3-4. In this case, the uniform linear
array spacing was increased to 1.1 times the wavelength, which
provided maximal aperture with unambiguous AOA estimation
since the maximal AOA was 50°. The ULA with relatively
wide spacing outperformed the nested and coprime arrays.
The array optimization method that minimizes the maximal
side-lobe level achieved slightly better performance than the
ULA, however, the optimized DNN method outperforms all
the reference methods.

Fig. 6, shows the RMSE results for the case that the
AOAs were uniformly distributed within a cluster of 10°,
and the cluster center was uniformly distributed in the range
(—80°,80°). There are various applications in which the
AOAs are clustered, such as local scatterer [22], collocated
sources or distributed target [23]. For this scenario, the co-
prime array achieves best performance from all the reference
methods, yet the proposed DNN optimization method outper-
forms it.

In summary, the results in Figs. 3-6, show that the proposed
method achieves lower AOA estimation error compared to all
the reference method for various AOAs distributions. The per-
formance advantage is because the proposed method optimizes
the antenna configuration to explicitly minimize the AOAs
estimation error per each specific distribution of AOAs. Unlike
the proposed method, the reference methods are designed to
minimize side-lobes or to have a large number of degrees of
freedom for AOA estimation. These optimization objectives
are related implicitly to the AOA estimation error and to the
AOA distribution.

V. CONCLUSIONS

A novel method for optimizing the antenna elements posi-
tions that minimize the AOAs estimation error, was introduces.
The method utilizes a DNN for estimating the number of
sources and the sources AOAs for a given antenna elements
positions. The use of the DNN in this case enables to calculate
the gradient of the estimation error with respect to the antenna
elements position, and thus to minimize the estimation error
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Fig. 4. Accuracy of the number of sources estimation for AOAs that are
uniformly distributed (—85°,85°). Number of sources per example was
random between one to four.
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Fig. 5. AOAs estimation RMSE performance for AOAs with uniform
distribution in (—50°,50°). Number of sources per example was random
between one to four.

with respect to the antenna positions by gradient descent.
The antenna elements positions are updated iteratively to
minimize the estimation error, and in return, the DNN adapts
the estimator to match to the updated antenna positions. The
proposed approach is unique because it optimizes the antenna
configuration to explicit minimize the estimation error, while
other reference methods use an optimization objective that is
only implicitly related to the AOA estimation error. The opti-
mized array showed a significant performance advantage in the
RMSE of the AOAs estimation, compared to reference antenna
configurations in various scenarios of AOAs distribution.
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