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Abstract—In this paper, we propose a new framework for
denoising 1D periodic signals with deep learning models by
exploiting their periodic properties. Our method lies on a
transformation of the raw waveform into a grid containing the
different periods. Networks used with these data can be simply
obtained by leveraging end-to-end fully convolutional denoisers
containing only 1D convolutions, by replacing some of their layers
by 2D convolutions. Our method also offers the advantage of
being able to learn one model for generalizing to a large band of
frequencies, including unseen ones, instead of requiring to learn
one model per frequency. We also study the generalization of our
method to real data.

Index Terms—Denoising, periodic signals, deep learning, white
noise, colored noise

I. INTRODUCTION

The denoising task, which consists of extracting a clean
signal y from a mixture x = H(y) + e with e a noise and
H the transfer function of the sensor (in this paper, we will
consider H(y) = y), has been widely explored in the last
decades. It is often a prerequisite to other tasks such as fault
diagnosis [1], [2] or automatic speech recognition [3].

Recently, conventional methods [4] have widely been re-
placed by deep learning techniques, especially in the context of
audio signals. Several architectures have been tried, including
convolutional networks [5]-[10], generative adversarial net-
works [11]-[14] or LSTM [3]. Audio source separation, which
can be seen as a generalization of audio enhancement has also
benefited from Deep Learning methods [15]-[19].

In this paper, we focus on denoising periodic and more gen-
erally cyclostationary signals. Periodicity can be encountered
in various signals, e.g. audio signals (where the periodicity
might be restrained to a few seconds), electrocardiograms and
rotating machinery (where the periodicity might be expected
for the whole signal). For exploiting the periodicity, one
solution is to use the coefficients of the Fourier series [20].
Time-frequency representations [21] are also commonly used,
however they only give information about the local spectral
content. Concerning neural networks (especially convolutional
ones), they generally focus mostly on an area around the
observed sample due to their limited receptive field. Observing
several periods could be done using dilation or long convolu-
tions, however, this would allow specializing the network on
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denoising periodic signals with a certain range of frequencies,
but it would not be possible to obtain a single network able
to generalize to a large band of frequencies.

In this paper, our contribution is to propose a new frame-
work for improving 1D convolutional denoisers when applied
to periodic data, by reshaping the raw data to form a 2D
grid where each line is a realisation of the same signal at
the same timestamp. This method can be applied to any 1D
convolutional denoisers and allow to train a single model for
analyzing signals of various frequencies. To exploit this new
shape, we propose some adaptations to a given deep learning
model designed for end-to-end denoising [7], [15] in order to
observe not only the temporal dimension, but also the newly
created periodic dimension.

In Section II, we detail our method and the way of adapting
neural networks to the new shape of our data. In Section III, we
give an example of adapting a 1D convolutional denoiser for
our method and we show the improvements that are possible
in an ideal case, where the signals are exactly periodic and
the fundamental frequency is known. In Section IV, we show
how our method could deal with more realistic setups.

II. EXPLOITING THE PERIODICITY OF THE DATA
A. Introduction of the general framework

We aim to extract a component y of period 7' from the
mixture X =y + e where e is a noise. If we assume that first
and second order moments of e are periodic (that is to say
that e is cyclostationary), then the sequence {x(t + kT') }kez
(with a fixed t) is the realisation of a stationary (at the second
order) process. Additionally, if e is centered, we can expect
the periodic-wise sequence {e(t + kT)}rez to be close to
the realisation of a white noise as correlations of the noise
tend to decrease with time. Therefore, using the information
contained in this periodic-wise sequence additionally to the
one contained in a temporal sequence of samples around x(t)
should be beneficial in terms of denoising results. For neural
networks to be able to benefit from this information, we
reshape the data to form a grid X = {X, »}peq1,P] ne1,n]
where P is the amount of realisations of N samples and
Xpn = (nTe +to + (p— 1)T) with T, the sampling period
and ¢y an initial time. By doing this, we ensure that for two
given p; and py, X, , and X, , always share the same
probabilistic properties. Notice that there is no necessity for [V
to be the amount of samples in one period of the signal, which
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Fig. 1. Global framework for denoising

means we can generate grids of the same size for different
frequencies or have more than one single complete period in
a single line (we show how these properties are beneficial in
II-B and II-C).

For exploiting this new shape of the data, neural networks
also need to be able to consider not only the temporal
dimension, but also the newly created periodic dimension. A
possibility would be to use a neural network used for 2D de-
noising. However, such neural networks generally treat the two
dimensions the same way, whereas we can expect our method
to require a longer receptive field on the temporal dimension
than on the periodic dimension to be able to recognize some
specific shapes. Additionally, in real applications, the amount
of periods might be limited and the properties of the signal
could evolve sharing only few common information, which
means it is preferable to avoid having a too long receptive field
on the periodic dimension. The method we adopt is to take
a 1D convolutional neural network designed for end-to-end
denoising [5]-[8] and to replace some of its 1D convolutions
by 2D convolutions. Here again, we want to avoid a too long
receptive field on the periodic dimension, which means we
prefer to have a limited amount of 2D convolutions.

The resulting framework for performing the denoising is
shown in Figure 1. This method could be compared to patch-
based denoising, a method often used for image denoising,
including Deep Learning methods [22], where our patches are
obtained directly through assumptions on periodicity.

B. Shaping data for training

As explained in II-A, it is not necessary that the length of
the line coincides with one period of the original signal, as
long as the process obtained by concatenating the resulting
lines remains periodic (for example, the process obtained by
removing the second half of each period remains periodic).
This implies that we can create grids of the same size for
signals of different frequencies as long as we ensure that all
lines of the grid share the same phase, allowing us to train a
single model for generalizing to a large band of frequencies.
This process is applicable with real data or with synthetic
data where each line is generated as the sum of a deterministic
signal and a random noise. Notice that due to the decorrelation
along the periodic dimension, using synthetic data with a white
noise could lead to good generalization for centered colored
noises (a demonstration of this will be given in Section III-C).
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Fig. 2. Method for creating the grid with a signal of 15 samples containing
3 periods of 5 samples, with networks having a receptive field of length 3
for the first dimension. Samples affected by zero-padding on this dimension
are hatched.

C. Shaping the data for inference

For denoising the signals, the first step is to transform the
1D signal into a grid with data from different periods being in
parallel. If the signal is made of P periods, each one having
N samples, the most natural method would be to create P
lines, each one containing exactly one period. An example
of the resulting grid is given in Figure 2(b) for the signal
of Figure 2(a). However, as it is shown in those figures, this
would result in using more zero-padding along the temporal
dimension than in the 1D method (zero-padding would be
performed for each line instead of only at each extremity).
Therefore, we propose (see Figure 2(c)) to extend each line
by the length of the temporal receptive field on each side of the
grid, by adding the end of the previous period at the beginning
of the line and the beginning of the next period at the end.
Only the first and last lines would have to be filled with zeros.
The pass through the network would then require additional
zero-padding, but impact would be limited as only the center
of the denoised grid is further used for forming the resulting
1D signal. In Figure 2(c), only the sub-grid inside the bold
blue box will be used to create the 1D signal, resulting in the
same amount of zero-padding for the useful part as in the 1D
process.

Here, we did not mention zero-padding regarding the peri-
odic dimension. However, the problem would also be present,
and our method requires a sufficient amount of periods to give
satisfying results. Also notice that in this paper, we assume
previously knowing the exact frequency of the signals, which
means no period detection and registration are required.
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III. EXPERIMENTS

A. Settings and training

For comparing our method with a 1D end-to-end neural
network, we will use a setup similar to the one of [23]. We
train our models with data generated through the model :

Sn = Acos (2nvn + ¢g)+(1—N)sgn (cos (2mvn + ¢1)) (1)

where A € [0,1], (¢o0,¢1) € [0,27])? and v = fi with f
the frequency and f. the sampling frequency (10°Hz in our
studies).

This model is used for testing the ability of a network
trained with a specific shape of signals to adapt to other kind
of signals and was originally used in [23] to consider both
smoothness and strong discontinuities.

The noisy signal is created by adding a noise e to the signal
with a power defined to obtain a pre-defined signal-to-noise
ratio (SNR), defined as:

2
SNR = 10log,, (|S|2> )
lelf3

The neural networks are based on [7]. We consider two
models from [23] : the “full” architecture, that we will
denote as ”Original”, and the “medium” architecture trained
with a regularization parameter of 1, that we will denote as
“"Medium”. We will create two 2D architectures based on
the same architecture. Our first model is the same as the
“Medium” one, where we replace the 1D convolutions of
layers 4 and 8 of each stack by 3 x 3 convolutions (without
dilation for the periodic dimension). We will denote this
architecture as PWNet for Periodic WaveNet as we used
the architecture of WaveNet (another architecture could be
used). As using 2D kernels for some layers will expand the
amount of parameters and might give an unfair comparison
with the "Medium” architecture, we also create a smaller
architecture based on the architecture denoted as “small” in
[23] by replacing the layers 3 and 6 of each stack by 2D
convolutions. We will denote this architecture as PWNet®.
Both PWNet and PWNet® have a receptive field of 9 periods
for the periodic dimension.

1D networks are trained the same way as described in
the original paper [23]. Concerning our 2D architectures,
we use the following settings with grids of synthetic signals
generated with Equation 1. We use 10000 grids, containing
P = 10 realisations of N = 2048 samples with frequencies
in set {0.25,0.5,1,2,4, 8,16, 24, 32}Hz and a white noise for
reaching SNR in set {—10,—5,0,5,10,20}dB. We perform
30 epochs, with batches of size 8, an initial learning rate of
0.001 divided by 10 after 20 epochs. 3000 validation grids
(generated as the training ones) are used to detect the best
model. The sampling frequency of the signals is f. = 10°Hz.

Most of these settings are very close to the ones of [23]
and the total amount of samples in each grid (20480) is in the
same order as the amount of samples in each signal used for
training in [23] (20000).
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Fig. 3. Evolution of the obtained SNR for various initial SNR, with signals
of fundamental frequency of 60Hz

Our loss term for 2D models is the mean absolute error
(MAE), defined in our case as :

P N
A 1 N
‘C(Y’Y) = P % N ZZ |YI)7” - }/pvn
p=1n=1

3)

with Y the predicted grid and Y the ground truth.

B. Results with synthetic friction data

As explained previously, we want to check the ability of
trained models to adapt to different kind of signals. Therefore,
we apply our models to data generated with the following
friction model from [24]:

V]

p(V) = (pe + (s = ) ™ C)) X sgn(V) + B,V @)

where ., s, @ and kg are constants and V' is a periodic speed
(we generate it with Equation 1 and multiply it by a coefficient
proportional to the frequency such that the speed’s maximal
value is 1 at 40Hz). As for the training data, this model will
generate both discontinuities and smooth variations, but the
variations will be different from a sinusoid.

Each evaluation is performed on 60 signals containing
white noise, all signals having the same SNR and the same
frequency. All generated signals contain 100000 samples at
sampling rate 10°Hz and the grids are created based on the
theoretical frequency. To compare our method with a standard
non-deep learning based method, We also apply the method
of [25] with a bandwidth A = 0.60 (with ¢ the standard
deviation of the noise), a patch half-width of 500 samples and
a neighborhood half-width of 10000 samples (which allows
exploiting the periodicity for high frequencies). We denote this
method as "NLM?”. There might be more efficient methods, but
this one is well suited for denoising periodic signals containing
white noise.

Figure 3 (PWNet* will be introduced in Section IV) shows
the evolution of the obtained SNR depending on the initial
SNR with a fundamental frequency of 60Hz. 2D models
largely outperform 1D models, as well as [25].

Figure 4 shows the evolution of the SNR with respect to the
frequency of the signal for an initial SNR of —5dB. For very
low frequencies, our method is outperformed by 1D models
(including [25]), which could be expected as the amount
of periods is low and 2D models cannot use the periodic
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Fig. 5. Evolution of the obtained SNR for various initial SNR, with signals
of fundamental frequency of 60Hz and colored noise

dimension properly. 2D models become advantageous when
the amount of periods is large enough to use the periodic
dimension. The better results of PWNet compared to PWNet®
might be due to the higher depth, which implies a longer
receptive field along the temporal dimension. However, the
difference remains small and the comparison with 1D models
indicates that the periodic dimension is more useful for this
experiment.

C. Generalization to colored noises

To confirm the assumption of a better generalization to
colored noises due to whitening the noise along the periodic
dimension, we perform a new set of evaluations, where the
only difference with Section III-B is that we do not use a
white noise but a noise generated according to:

e=vyc+ (1—y)w (5

where w is a white noise and c is a colored noise obtained
by performing a moving average with a square window of
200 samples on a white noise, which could be assimilated
to filtering a white noise with a low-pass filter with cutoff
frequency 221.5Hz (with a sampling frequency of 10°Hz). We
use v = 0.9 to get largely colored noises.

The evolution of the obtained SNR for various initial SNR
with a fundamental frequency of 60Hz is shown on Figure 5.
We also give some numerical values in Table 1.

As expected, our method improves generalization to this
kind of noise. An illustration of denoising results of such
signals with both 1D and 2D methods is shown in Figure 6,
illustrating phenomenons explaining these quantitative results.
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Fig. 6. Example of denoising for a signal containing colored noises

TABLE I
NUMERICAL VALUES OF SNR (IN DB) FOR SIGNALS AT 60HZ WITH
COLORED NOISE

Initial SNR | Medium | Original | PWNet | PWNet®

-20 -13.68 -11.78 -4.44 -3.89
-5 1.12 2.19 10.07 10.63
5 11.65 11.88 19.87 20.39

Notice that in this cas, PWNet® gives a better generalization
to colored noises.

IV. GENERALIZATION TO REAL SIGNALS

Based on the results showed in Section III, our method
seems advantageous. However, as the training signals are
periodic and the fundamental frequency is known, it is likely
that these models will not be as efficient when dealing with
real data. To illustrate this problem, we applied PWNet and
Medium to real friction signals obtained by Ireis (HEF Group)'
with a linear reciprocating tribometer, for which the frequency
used to create the grids was the one given as a reference to
the mechanism. To show how our method remains effective,
we also trained a new 2D model, that we also applied to the
real data. The only difference of this architecture compared
to the PWNet lies in the training set, as the lines of the grids
will contain a constant shift compared to the theoretical value,
defined by a uniform law U ([—0.0557;0.05S57]) with St the
amount of samples per period. We denote this new architecture
as PWNet*.

Figure 7 shows the results obtained with a signal containing
almost no noise. Despite the weak noise, assuming exactly
periodic signals results in poor performance near the peaks.
PWNet* manages to get similar results to the ones of the 1D
method, showing that it is able to deal with periodic shifts
by focusing on the local context when the periodicity is not
exploitable.

Figures 3 and 4 seem to indicate that PWNet* remains able
to benefit at least partially from the periodicity, as it gets better
results as 1D models for these exactly periodic signals. With
colored noises (Figure 5), PWNet* does not seem to be able
to exploit the periodicity and when the initial SNR is low,
but it still performs similarly to 1D models. When the initial

Thttp://www.ireis.fr/en/
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Fig. 7. Comparison of the methods with a real signal containing weak noise

TABLE 11
RESULTS (IN DB) WITH AN ERROR IN THE GIVEN FREQUENCY
Frequency 20Hz 45Hz 60Hz
Initial SNR -10 10 -10 10 -10 10
Medium 12.38 | 31.56 | 10.00 | 28.96 9.11 26.74
PWNet 14.44 | 17.21 | 1443 | 20.15 | 14.37 | 20.93
PWNet* 14.88 | 32.35 | 14.23 | 30.82 | 13.69 | 29.11

SNR gets higher, PWNet* starts exploiting the periodicity and
outperforms 1D models.

Additionally, we evaluate Medium, PWNet and PWNet*
with the same signals as for Section III-B, but instead of
creating the grid with the exact fundamental frequency, we
create it with a frequency that has up to 1% relative difference
with the correct frequency, which will result in creating grids
with shifts between the lines. We show some values in Table II.
With an initial SNR of —10dB, PWNet and PWNet* perform
similarly and largely outperform Medium, showing that in the
presence of large noise, 2D models remain interesting even if
they were trained with exactly periodic signals and by knowing
the exact frequency. When the initial SNR grows, PWNet
seems to saturate and is outperformed by both PWNet* and
Medium, which shows that the assumption of exactly periodic
signals degrades the results in case of weak noise. PWNet*
still outperforms Medium, showing that this model is still able
to benefit from periodicity even if the phenomenons are not
exactly at the same position in the lines.

V. CONCLUSION

In this paper, we proposed a method for denoising signals
whose useful information is assumed to be periodic. We
demonstrated the efficiency of our method compared to end-
to-end denoisers in some tool applications, where ground truth
was exactly periodic. We also showed that with simple changes
of the training data, our method might be able to benefit
from the periodic information even for real data where the
lines will contain some shifts (due to a bad detection of the
fundamental frequency, local events, ...). Further work will
focus on improving this generalization to realistic contexts.

REFERENCES

[1] X. Wang, Y. Zi, and Z. He, “Multiwavelet denoising with improved
neighboring coefficients for application on rolling bearing fault diagno-
sis,” MSSP, vol. 25, no. 1, pp. 285-304, 2011.

[2]

[3

=

[4

flna

[5]

[6]

[7]
[8]

[9]

[10]

(11]

[12]
[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

(21]

(22]

(23]

[24]

[25]

1575

S. Abbasion, A. Rafsanjani, A. Farshidianfar, and N. Irani, “Rolling
element bearings multi-fault classification based on the wavelet denois-
ing and support vector machine,” MSSP, vol. 21, no. 7, pp. 2933-2945,
2007.

F. Weninger, H. Erdogan, S. Watanabe, E. Vincent, J. Le Roux, J.R.
Hershey, and B. Schuller, “Speech enhancement with Istm recurrent
neural networks and its application to noise-robust asr,” in LVA/ICA.
Springer, 2015, pp. 91-99.

J. Chen, J. Benesty, Y.A. Huang, and E.J. Diethorn, “Fundamentals
of noise reduction,” in Springer Handbook of Speech Processing, pp.
843-872. Springer, 2008.

S.W. Fu, T.W. Wang, Y. Tsao, X. Lu, and H. Kawai, “End-to-end wave-
form utterance enhancement for direct evaluation metrics optimization
by fully convolutional neural networks,” IEEE/ACM TASLP, vol. 26,
no. 9, pp. 1570-1584, 2018.

S. Fu, Y. Tsao, X. Lu, and H. Kawai, “Raw waveform-based speech
enhancement by fully convolutional networks,” in 2017 APSIPA ASC.
IEEE, 2017, pp. 006-012.

D. Rethage, J. Pons, and X. Serra, “A wavenet for speech denoising,”
in 2018 ICASSP. IEEE, 2018, pp. 5069-5073.

L. Casas, A. Klimmek, N. Navab, and V. Belagiannis, “Adversar-
ial signal denoising with encoder-decoder networks,” arXiv preprint
arXiv:1812.08555, 2018.

A. Neacsu, K. Gupta, J.P. Pesquet, and C. Burileanu, “Signal denoising
using a new class of robust neural networks,” in 2020 EUSIPCO. 1IEEE,
2021, pp. 1492-1496.

Ritwik Giri, Umut Isik, and Arvindh Krishnaswamy, “Attention wave-
u-net for speech enhancement,” in 20/9 WASPAA. IEEE, 2019, pp.
249-253.

C. Donahue, B. Li, and R. Prabhavalkar, “Exploring speech enhancement
with generative adversarial networks for robust speech recognition,” in
2018 ICASSP. 1EEE, 2018, pp. 5024-5028.

S. Pascual, A. Bonafonte, and J. Serra, “SEGAN: Speech enhancement
generative adversarial network,” arXiv preprint arXiv:1703.09452, 2017.
Z. Meng, J. Li, Y. Gong, and B.H.F. Juang, “Cycle-consistent speech
enhancement,” arXiv preprint arXiv:1809.02253, 2018.

S. Abdulatif, K. Armanious, K. Guirguis, J. T Sajeev, and B. Yang,
“Aegan: Time-frequency speech denoising via generative adversarial
networks,” in 2020 EUSIPCO. IEEE, 2021, pp. 451-455.

D. Stoller, S. Ewert, and S. Dixon, “Wave-u-net: A multi-scale
neural network for end-to-end audio source separation,” arXiv preprint
arXiv:1806.03185, 2018.

D. Wang and J. Chen, “Supervised speech separation based on deep
learning: An overview,” IEEE/ACM TASLP, vol. 26, no. 10, pp. 1702-
1726, 2018.

Z. Rafii, A. Liutkus, F.R. Stoter, S.I. Mimilakis, D. FitzGerald, and
B. Pardo, “An overview of lead and accompaniment separation in
music,” IEEE/ACM TASLP, vol. 26, no. 8, pp. 1307-1335, 2018.

Yi Luo and Nima Mesgarani, “Conv-tasnet: Surpassing ideal time—
frequency magnitude masking for speech separation,” IEEE/ACM
TASLP, vol. 27, no. 8, pp. 1256-1266, 2019.

Yi Luo, Zhuo Chen, and Takuya Yoshioka, “Dual-path rnn: efficient long
sequence modeling for time-domain single-channel speech separation,”
in 2020 ICASSP. 1IEEE, 2020, pp. 46-50.

O. Dromer, O. Alata, and O. Bernard, “Impedance cardiography filtering
using scale fourier linear combiner based on rls algorithm,” in 2009
Annual International Conference of the IEEE EMBS. 1EEE, 2009, pp.
6930-6933.

J. Gao, R. Wang, L. Hu, and R. Zhang, “A novel manifold learning
denoising method on bearing vibration signals,” Journal of Vibroengi-
neering, vol. 18, no. 1, pp. 175-189, 2016.

I. Hong, Y. Hwang, and D. Kim, “Efficient deep learning of image
denoising using patch complexity local divide and deep conquer,”
Pattern Recognition, vol. 96, pp. 106945, 2019.

J. Rio, F. Momey, C. Ducottet, and O. Alata, “Wavenet based archi-
tectures for denoising periodic discontinuous signals and application to
friction signals,” in 2020 EUSIPCO. IEEE, 2021, pp. 1580-1584.

S. Andersson, A. Soderberg, and S. Bjorklund, “Friction models
for sliding dry, boundary and mixed lubricated contacts,” Tribology
international, vol. 40, no. 4, pp. 580-587, 2007.

Brian H Tracey and Eric L Miller, “Nonlocal means denoising of ecg
signals,” IEEE transactions on biomedical engineering, vol. 59, no. 9,
pp- 2383-2386, 2012.



