
Radar Target Detection with CNN 
Faruk Yavuz 

ASELSAN Research Center     

ASELSAN Inc. 

Ankara, Turkey 

farukyavuz@aselsan.com.tr 

 

Abstract—Target detection is a fundamental radar 

application that is traditionally carried out by Constant False 

Alarm Rate (CFAR) detectors. This paper proposes a 

Convolutional Neural Network (CNN) based detector 

(RadCNN) to replace the standard CFAR detectors for a typical 

pulsed Doppler radar. RadCNN takes patches of the range-

Doppler ambiguity function as input and returns detection 

status for the input patch. A radar simulator is developed for 

data generation with desired noise and clutter scenarios. 

RadCNN is compared against Cell-Averaging (CA), Smallest of 

Cell Averaging (SOCA), Greatest of Cell Averaging (GOCA), 

Ordered Statistics (OS) CFAR and similar state of the art 

detectors in the literature. The comparison is done for a variety 

of scenarios including multiple targets, thermal noise and clutter 

at different Signal to Noise Ratios (SNR) and Clutter to Noise 

Ratios (CNR). It is shown that RadCNN improves the 

performance of CFAR for low SNR and exhibits four orders of 

magnitude less computational complexity than the similar state 

of the art and realizable in real-time applications. 

Keywords—Deep Learning, Radar, Target Detection, CNN, 

CFAR. 

I. INTRODUCTION 

Radar has been widely used for military and civilian 
applications since 1904 [1]. Radars address a diverse set of 
applications including surveillance, navigation, monitoring, 
mapping, weather forecasting, and collision avoidance [1], 
[2]. Pulse-Doppler radar, in particular, scans the surrounding 
environment by transmitting pulses from an antenna or an 
array of antennas, and processes the received echoes of these 
pulses to perform signal conditioning, detection, and post-
detection tasks like tracking or target recognition [2]. 

Pulse-Doppler radar arranges the received echoes into 
range-Doppler data matrix, which is further processed to 
obtain the ambiguity function over a grid of range and Doppler 
axes [2]. The system checks for targets by comparing the 
reflected signal strength against a threshold derived from the 
data matrix. Unpredictable nature of interference requires the 
use of adaptive algorithms like Constant False Alarm Rate 
(CFAR) detectors [2]. CFAR detectors differ in calculation of 
the threshold, the most popular ones being Cell-Averaging 
(CA), Smallest of CA (SOCA), Greatest of CA (GOCA), and 
Ordered Statistics (OS) CFAR algorithms [2]. 

Deep Learning has become quite popular over the past 
decade for automating the feature learning process. The 
features are learnt from large datasets by scanning different 
abstraction layers. Speech recognition, object detection, and 
natural language processing are some of the fields where Deep 
Learning has advanced the state of the art remarkably [3]. One 
of the many Deep Learning techniques is Convolutional 
Neural Networks (CNNs). CNNs use convolutional filters to 
extract the underlying features of the data and perceptron 

layers for the classification using the extracted features [4]. 
CNNs have achieved significant performance improvements 
in image classification tasks starting with ‘LeNet-5’ [4]-[7]. 

Mason et al. have forecasted the application of Deep 
Learning to radar [8]. Chen et al. showed that CNN based 
algorithms outperform the existing Synthetic Aperture Radar 
(SAR) target recognition algorithms [9]. Akçakaya et al. 
applied incremental learning to radar [10]. Deng et al. 
performed target detection using decision trees with feature 
vectors and machine learning [11]. Wang et al. applied a 
‘LeNet-5’ inspired CNN detector for radar [12]. Following the 
work in [12], Xie et al. showed that the CNN improved the 
performance on real data [13]. Yavuz et al. developed a CNN 
detector for single target in homogeneous interference [14]. 

This paper proposes a CNN based radar multi-target 
detection algorithm (RadCNN). RadCNN takes patches of the 
range-Doppler ambiguity function as its input and generates 
probability of target presence at the center of the patch. 
RadCNN employs a different classification method and a 
different network structure compared to the detectors given in 
[12], [13]. RadCNN learns to detect targets from the training 
patches of the range-Doppler input and slides through the 
input for detection at every possible cell, like [12]. However, 
RadCNN uses one convolutional layer and fully connected 
layer whereas [12] employs multiple convolutional layers and 
two fully connected layers. RadCNN works in the presence of 
noise and clutter, whereas [12] only works under noise.  

A radar simulator to emulate radar scenarios with desired 
levels of clutter and thermal noise is developed for data. 
Detector performances are evaluated in terms of probability of 
detection (PD), probability of false alarm (PFA) and 
computational complexity. Since [13] implemented [12] for 
real radar data, the performance of [12] is studied in this study. 
The performance results of [12] are retained here in order to 
make the comparisons bias-free. 

The rest of the paper is organized as follows. Section II 
reviews the traditional CFAR algorithms. Section III details 
the proposed technique and adopted target scenarios. Section 
IV presents the simulation results. Section V concludes the 
proposed work and lays out future work. 

II. CONSTANT FALSE ALARM RATE DETECTION 

CFAR algorithms compare the amplitude of the received 
signal to an adaptive threshold. The threshold is set to 
maintain a constant false alarm rate assuming that the 
interference follows a certain distribution. Adhering to CFAR 
terminology, the unit to be tested is the Cell-Under-Test 
(CUT), the cells used for estimation of the interference are 
Reference Cells (RCs), and the cells between the CUT and the 
RCs are the Guard Cells (GCs). CFAR window shifts through 
the range-Doppler data and tests each cell for a target. When 
both range and Doppler cells are used as RCs, CFAR is called 
two-dimensional (2D). The flow of a typical 2D CFAR 
algorithm is shown in Fig. 1. 
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As shown in Fig. 1, clutter strength (𝑃𝐶𝑙𝑢𝑡𝑡𝑒𝑟) is estimated 
using the RCs, and the threshold is calculated by multiplying 
the former with a scaling constant 𝐾. A target is detected if 
signal strength of CUT is greater than 𝐾𝑃𝐶𝑙𝑢𝑡𝑡𝑒𝑟 . CFAR 
algorithms differ in the estimation of 𝑃𝐶𝑙𝑢𝑡𝑡𝑒𝑟  and 𝐾 . Each 
CFAR detector has pros and cons depending on the radar 
environment. Common CFAR algorithms are detailed in the 
following subsections. The computational complexities are 
summarized for a data matrix having 𝑁𝑅 and 𝑁𝐷 cells along 
the range and Doppler axes, respectively. 

A. CA-CFAR 

CA-CFAR is developed for operation in homogeneous 
interference scenarios [2]. 𝑃𝐶𝑙𝑢𝑡𝑡𝑒𝑟  is estimated as the mean of 
all available RCs. 𝐾 is calculated using the total number of 
RCs (𝑁) for a square-law detector as 

 𝐾 = 𝑁 (𝑃𝐹𝐴
−1/𝑁 − 1)  . 

CA-CFAR performs poorly at clutter transitions, under target 
masking scenarios and for nonhomogeneous interference [2]. 
Computational complexity is given as 𝑂(𝑁𝑅𝑁𝐷𝑁). 

B. SOCA-CFAR 

SOCA-CFAR is developed to handle target-masking 
scenarios [2]. 𝑃𝐶𝑙𝑢𝑡𝑡𝑒𝑟  is estimated as the smaller of the means 
of lagging and leading RCs. For a square-law detector, 𝐾 is 
calculated as 

 𝑃𝐹𝐴 = 2 ∑ (
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SOCA-CFAR outperforms CA-CFAR under target masking 
scenarios, but yields a high CFAR loss for other scenarios [2]. 
Computational complexity is given as 𝑂(𝑁𝑅𝑁𝐷(𝑁 + 1)). 

C. GOCA-CFAR 

GOCA-CFAR algorithm is developed to handle clutter 
edge transitions [2]. 𝑃𝐶𝑙𝑢𝑡𝑡𝑒𝑟  is estimated as the greater of the 
means of lagging and leading RCs. For a square-law detector, 
𝐾 is calculated as 
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GOCA-CFAR outperforms CA-CFAR at clutter edges, 
but fails under target masking scenarios and exhibits 
additional CFAR loss for homogenous interference [2]. Its 
computational complexity is given as 𝑂(𝑁𝑅𝑁𝐷(𝑁 + 1)). 

D. OS-CFAR 

OS-CFAR algorithm is developed to improve CA-CFAR 
at clutter transitions and under target masking scenarios [2]. 
𝑃𝐶𝑙𝑢𝑡𝑡𝑒𝑟  is estimated as a certain rank of RCs. The rank 
representing 𝑃𝐶𝑙𝑢𝑡𝑡𝑒𝑟  is chosen as 75% of 𝑁  [2]. 𝐾  is 
calculated for a square-law detector as  

 𝑃𝐹𝐴 = 𝑘 (𝑁
𝑘

) 𝛣(𝐾 + 𝑁 − 𝑘 + 1,  𝑘) 

where 𝑘 is the rank and 𝛣(. ) is the beta function. OS-CFAR 
combines the strengths of CFAR detectors discussed above 
and improves the overall detection performance with a 
reasonable CFAR loss at the cost of extra computations [2]. 
The complexity becomes 𝑂(𝑁𝑅𝑁𝐷𝑁 log 𝑁). 

III. TARGET DETECTION WITH RADCNN 

CNN algorithms have good performance on multi-label 
image classification problems [5]-[7]. Inspired by this 
principle, a CNN is designed to take patches of the range-
Doppler ambiguity matrix as its input and to classify target 
presence. The dataset and RadCNN are detailed in the 
following subsections. 

A. Data Preperation 

A radar simulator is developed in order to generate the data 
required to test RADCNN and traditional CFAR algorithms. 
The simulated radar operates at 1 GHz carrier modulated by 
linear frequency modulated (LFM) pulses with 7.5 MHz 
bandwidth and 20 µs pulse duration over a coherent 
processing interval (CPI) of 16 pulses. Range and velocity 
resolutions translate to 20 m and 9.38 m/s, respectively, with 
an accompanying range bin spacing of 10 m. Over the 
unambiguous range swath and speed interval of 30 km and 75 
m/s, the generated range-Doppler data matrix has a size of 
3000 x 16. Simulated scenario features Swerling type-0/5 
targets, independent identically distributed (i.i.d.) white noise, 
and clutter. Following clutter settings are employed [2]: 

 Weibull distributed clutter over 5-7.5 km and around 
zero Doppler with shape and scale parameters of 1 
and 1. 

 Weibull distributed clutter over 7.5-10 km and around 
zero Doppler with shape and scale parameters of 2 
and 1. 

 K-distributed clutter over 15-17.5 km and around zero 
Doppler with shape and scale parameters of 3 and 1. 

 K-distributed clutter over 17.5-20 km and around zero 
Doppler with shape and scale parameters of 15 and 1. 

The clutter settings are designed to realize clutter walls, 
noisy area to clutter transition, and clutter to clutter transitions 
within the CFAR reference window. Clutter to clutter 
transitions are simulated by varying parameters within the 
same distribution. Weibull and K-distributed clutters are 
commonly used for simulating land and sea clutter, 
respectively [2]. Radar detection is casted as a classification 
task by assigning two labels to data patches, indicating the 
target presence at the center of the patch. These patches are 
chosen to represent challenging and common target detection 
scenarios. Specifically, the scenarios demonstrate cases with 
targets under clutter with CFAR window overlapping the 
noise region (S1), targets at the center of clutter (S2), targets 
in noise region with CFAR window overlapping the clutter 
(S3), and targets in noise region only (S4). 

 
Fig. 1. 2D CFAR algorithm. 
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CNN input is designed as the patches of size 25 x 5 from 
the squared magnitude ambiguity matrix. The ambiguity 
matrix is constructed by matched-filtering the received signal 
in range and by subsequently taking FFT of the matched-
filtered signal in Doppler space [2]. Fig. 2(a) presents a sample 
range-Doppler image and Fig. 2(b) highlights example 
positions for test scenarios. Fig. 2(c) shows target absent patch 
example and Fig. 2(d) shows target present patch example. 

The training data comprises patches of range-Doppler 
images simulating Clutter to Noise Ratios (CNRs) of 4 dB, 7 
dB, and 10 dB. For each CNR, 200 range-Doppler images are 
created and are cut into 45500 patches per the aforementioned 
detection scenarios as target absent dataset. Then, each patch 
is simulated with a target at the center of the patch for target 
present data set at SNR values of 13 dB, 16 dB and 20 dB. The 
entire training data includes the target absent set and target 
present set at three different SNR, a total of 182000 files. 
Generated data are split into training, validation and test sets 
with ratios of 70-15-15%, respectively. 

B. Proposed Detector 

In order to improve the CNN detector given in [12], 
generic CNN structure is changed. Considering the domain 

characteristics, CNN is designed as a shallow network. Fig. 3 
illustrates the developed CNN. 

Stochastic gradient descent with momentum is used for the 
training of the network at a learning rate of 0.01. Batch size 
and momentum is set to 128 and 0.9, respectively.  As shown 
in Fig. 3, the network consists of an input layer with zero-one 
scaling, a convolution layer with 4 filters of size 5x3, a batch 
normalization layer, a ReLU layer, a fully connected layer 
with 2 outputs, a softmax layer, and a classification layer. The 
CNN achieved 87.41%, 87.42%, and 87.4% accuracy on the 
training, validation, and test data, respectively. The trained 
CNN is used as the core of RadCNN as shown in Fig. 4. 

As observed from Fig. 4, the received radar signal is 
matched-filtered in range and an FFT is subsequently applied 
along the Doppler axis. The resulting range-Doppler 
ambiguity matrix is magnitude squared for square-law 
detection. Patch generator slides through the range-Doppler 
image and generates 25x5 sized patches with a stride of 1. The 
CNN runs on the patch and decides the probability of target 
presence for the patch. This probability is registered onto the 
output matrix of size 3000x16. The algorithm enters the post 
processing stage once patch generator visits all the cells in the 
range-Doppler image. Post processor compares the 
probability matrix with a threshold. If the probability exceeds 
the threshold, RadCNN detects a target at the corresponding 
cell. The selection of the threshold determines the PFA of 
RadCNN. Hence, RadCNN has a tunable PFA and employs 
only a single convolutional layer, contrasting with [12].   

IV. SIMULATION RESULTS 

Performance of RadCNN is analyzed with simulated data. 
The test data is simulated using the training scenario using 
SNR values of 0, 1, 3, 6, 9, 11, 13, 15, 17, 20 dB each with 
CNRs of 4 and 10 dB. Simulations were run without a target 
and with ninety-eight targets. The targets are distributed in the 
range-Doppler image per the aforementioned four scenarios 
for each simulation. Hence, the experiments cover 40 test 
configurations with multiple examples of all scenarios tested 
with 200 Monte Carlo iterations. 

CFAR algorithms have a constant PFA of 10-3 with 20x2 
RCs and 4x2 GCs along range-Doppler axes. OS-CFAR has a 
rank ratio of 0.75. RadCNN post processor threshold is set as 
0.65 to acquire the PFA of 10-3. The results are analyzed in five 
different categories. The categories are designed to compare 
RadCNN to the CFAR detectors and [12] in realistic and 
demanding radar environments. 

 

Fig. 4. RadCNN algorithm flow 

     
(a) (b) 

 

                             (c)                                                       (d) 

Fig. 2. (a) Sample range-Doppler image, (b) Target scenarios,         

(c) Target absent patch, (d) Target present patch 

 
Fig. 3. Proposed CNN model. 
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Fig. 5 shows the average PD calculated using all 
simulations and all scenarios. Table I lists the average PFA 
calculated from Monte Carlo runs and the average 
computational cost for each algorithm. Fig. 6 and Fig. 7 show 
the simulated PD as a function of SNR for each of the four 
scenarios S1-S4 at a given CNR. 

As one observes from Fig. 5, RadCNN improves the 
performance of CFAR detectors by approximately 0.5 dB at 
low SNR values. RadCNN performance is comparable to 
CFAR detectors at high SNR values. It should be noted that 
this performance is a result of all the simulated scenarios and 
environments. It is also important to analyze the performance 
for specific scenarios and environments. 

Table I shows that average PFA of RadCNN is 1.5x10-3 and 
the CFAR algorithms cannot maintain their preset PFA of 10-3. 
In agreement with the literature, SOCA-CFAR has the highest 
PFA followed by OS-CFAR, CA-CFAR and GOCA-CFAR [2] 
due to the presence of clutter. In addition to the fact that 
RadCNN has much smaller computational cost compared to 
[12] (by four orders of magnitude), its performance for non-
homogeneous and homogeneous mixture environment is 
better than the CFAR detectors and [12].  

Authors of [12] supplied the results for noise only scenario 
and experimented with data patches where target is at the 
center. According to the reported performance of [12], the 
model outperforms CA-CFAR by 0.2 dB for high SNR and 
the model has comparable performance for low SNR. Authors 
of [12] did not report numerical values for CA-CFAR PFA. On 
the contrary, RadCNN is tested against different types of 
clutter with various configurations and the test patches are 

shifted across the range-Doppler image by one cell. Hence, 
RadCNN also needs to differentiate cases where the target is 
at the center of the patch by declaring target present and cases 
where target is off the center by declaring target absent. 
Despite the more comprehensive and challenging tests, 
RadCNN provided more improvement than [12] and has 
10000x less computational complexity. 

Computational savings of RadCNN over [12] originates 
from the reduced CNN depth, smaller input size, dismissal of 
second fully connected layer as well as the dramatic decrease 
on the number of convolution kernels. 

 One notes from Table I that the computational complexity 
of RadCNN is still approximately 10x the complexity of OS-
CFAR and 80x the complexity of CA-CFAR. Parallel GPU 
implementation of similar networks usually result in more 
than 10x speed improvements compared to the CPU 
implementations [15]. Hence, RadCNN is realizable in a real 
world scenario whereas [12] is far from a real-time realization.  

Since traditional CFAR algorithms are designed to work 
better under specific conditions, as the next step, RadCNN is 
compared against CFAR algorithms under these particular 
scenarios. Note that since [12] is not tested in the presence of 
clutter, a comparison is not possible. 

As seen on Fig. 6(a), RadCNN performs better than the 
CFAR algorithms, especially at low SNR when target is at the 
clutter border but within the clutter. Even though the 
performance gap between RadCNN and the rest decrease as 
CNR increases, RadCNN stays robust at high CNR scenarios. 

One observes from Fig. 6(b) that RadCNN outperforms 
the CFAR algorithms when target is covered by clutter. As 
CNR increases, the performance improvement of RadCNN 
becomes more distinct by exceeding a gain of 1 dB. 

 
Fig. 5. Average PD of all simulations. 

TABLE I.  DETECTOR PERFORMANCE COMPARISON. 

Detector Type Average PFA Average Operation Count a 

CA-CFAR 1.3x10-3 57.6x105 

SOCA-CFAR 1.7x10-3 58.1x105 

GOCA-CFAR 1.2x10-3 58.1x105 

OS-CFAR 1.6x10-3 39.8x106 

RadCNN 1.5x10-3 49.1x107 

[12] Not Applicable 54.2x1011 

  a 
Multiply, add, compare operations. 

      
                                                       (a)                                                                                                                              (b) 

Fig. 6. Simulated PD vs SNR: (a) Scenario S1, (b) Scenario S2 
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Fig. 7(a) shows that RadCNN is not as successful at 
detecting targets when they are near clutter but the reference 
window is mostly occupied by noise. At low CNR values, 
RadCNN performance is slightly better than the CFAR 
detectors but as CNR increases, RadCNN starts to perform 
worse than the traditional algorithms by almost 0.8 dB. This 
scenario will be the main challenge for future work.  

Fig. 7(b) shows that RadCNN performs on par with the 
CFAR algorithms when the target is surrounded by only noise. 
It should be noted that the CFAR techniques perform quite 
similarly but RadCNN has approximately 10% less PFA than 
OS and SOCA CFAR algorithms. 

V. CONCLUSION 

Target detection is the most fundamental application of the 
modern radar. Various types of CFAR detectors carry out 
target detection specializing at specific scenarios. This paper 
proposes RadCNN, a CNN based multi-target detector, to 
replace the traditional CFAR algorithms. Simulations under 
different scenarios including clutter transitions and clutter 
walls demonstrate that RadCNN improves the performance of 
the traditional CFAR algorithms and outperforms the similar 
state of the art CNN based radar target detector [12]. Even 
though RadCNN is tested more rigorously with different types 
of clutter distributions and target detection scenarios than [12], 
RadCNN achieves better performance improvement over the 
CFAR techniques. It is important to emphasize that RadCNN 
has four orders of magnitude less computational complexity 
than [12], meaning that it is realizable for real-time radar 
applications. In the light of the presented simulation results, it 
becomes clear that RadCNN detector is a viable and superior 
alternative to the similar state of the art [12] for realistic radar 
scenarios comprising both homogeneous and 
nonhomogeneous interference. 

It is planned to extend the presented work with a number 
of follow-up studies such as tests with measured radar data, 
improvements for additional computational savings, and 
possible improvements for clutter wall scenarios. Especially, 
the future studies will focus on the clutter wall scenarios 
where the target is in the noisy region. If RadCNN is further 
improved for target near clutter scenarios while maintaining 
performance for the rest, it will be an overall superior detector 
that works for all challenging radar scenarios. 
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Fig. 7. Simulated PD vs SNR: (a) Scenario S3, (b) Scenario S4. 
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