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ABSTRACT

Wireless sensor networks are susceptible to jamming attacks
that can result in communication breakdowns. Preemptive
measures to prevent jamming attacks is an active research
field, but to stop an ongoing attack often requires that one is
able to locate jammers in order to neutralize them. Several
methods exist for the case when the network is corrupted
by a single jammer, although these generally do not allow
for cases when more than one jammer is present. In this
work, we introduce an iterative procedure that determines
the number of jammers corrupting the network as part of the
localization of the jammers. The performance of the method
is illustrated using numerical examples.

Index Terms— Jammer detection

I. INTRODUCTION

In most wireless networks, the risk of jamming attacks
is ever present, and if successful, a jamming attack can
result in information corruption or even in the complete
breakdown of communication. This can result in, for in-
stance, erroneous decisions in GPS or satellite navigation
systems, potentially with fatal outcomes. Popular actions
to defend against jamming attacks are to use preemptive
measures such as a clever and robust network design, often in
combination with the use of communication protocols such
as e.g. MAC, and other security measures, such as, e.g.,
user authentication. Notable research conducted in jammer
attack prevention can be found in e.g. [1]-[4]. When a
successful jamming attack does occur, active action must be
taken to fend off the attack. In order to be able to counter
jamming attacks, it is generally critical to accurately locate
the jammer’s location, whereafter it may be neutralized in
a suitable way. Thus, an important problem is to accurately
estimate the location of jammers, and given the prevalence
of wireless sensor networks (WSNs), jammer localization in
WSNs is a problem currently attracting notable interest.

There are two main branches of jammer localiza-
tion/detection, namely range based and range free [5] ap-
proaches. The range based methods utilize the fact that the
strength of the jamming signal depends on the distance be-
tween the jammer and the jammed sensor. By estimating the
jamming signal strength at different locations, the jammer’s
location may then be deduced. The range free methods on the
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other hand only rely on the information about which nodes
that are jammed, not the extent of the jamming, which is
often practically more feasible. Range free methods require
information about the network topology and all sensor posi-
tions, which may be known from deployment or estimated in
a pre-processing stage. The range free methods on the other
hand are attractive due to their relative simplicity, and they
also have the benefit of not requiring a priori knowledge of
the signal strength at all the sensors. This makes them more
versatile than range based estimators, even though the latter
theoretically may have preferable performance [5].

To date, most of the literature has focused on jammer
localization in the single jammer scenario, see e.g. [5]-
[9]. One main weakness with these methods is their inabil-
ity to handle multiple jammers with overlapping jamming
regions. A notable contribution to the problem of multi-
jammer localization was made in [10], wherein the authors
present the so-called X-ray and M -cluster methods. The X-
ray method determines the entire jammed area by forming
the convex hull of the jammed sensors. Then, the different
cluster centers used in the jammer localization are found
by finding the branching points of the skeleton that maps
the topology of the jammed region. The M -cluster approach
on the other hand groups the jammed nodes by means
of a so-called fuzzy c-means clustering, followed by an
iterative centroid localization for each of the clusters [10].
For both methods, the number of jammers is estimated at the
start of the procedure, using a priori assumed knowledge
of the jammers’ average transmission range. The methods
are efficient if the transmission range is known, or can
be well estimated. However, when the number of jammers
is inaccurately estimated, or for non-circular transmission
patterns, the average transmission range does not accurately
reflect the jammed area, the methods performs poorly.

In this paper, we present a novel method for multi-jammer
localization with overlapping regions without requiring any
prior knowledge about the average jammer transmission
range. Our approach follows an iterative procedure. In
the first step, we assume the presence of only a single
jammer (N;=1). Then, in the following step, we estimate
the locations of the assumed N; jammers as the clustering
centers produced by a Gaussian mixture model. The jammer
estimates are then improved by iteratively finding the V;
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Fig. 1. An illustration of a WSN containing three elliptical
jammers. The jammer position is marked as red stars.

maximally inscribed ellipsoids in the jammed area. The
method then tests the obtained result for plausibility to
determine if the found jammers can well explain the pattern
of jammed sensors. If the test fails, the assumed number of
jammers, IV;, is increased by one and the localization step
is repeated, followed by a new plausibility test, and so on.

II. PROBLEM FORMULATION

One may generally model a wireless sensor network by
means of a graph, where each sensor is represented by a
node. The network is then described by G = {V, E'}, where
V' denotes the set of nodes and E the set of edges linking the
nodes together. In this setup, E is a binary set; if two nodes
can communicate directly, they are considered to be neigh-
bours and their common edge gets the value one, otherwise
it is set to zero. The network is here considered to be two
dimensional, with the /th sensor assumed located at position
(x§,y;). Moreover, the nodes are assumed to be stationary,
such that their locations are fixed. The node placement may
be modelled as having been made in a stochastic manner, or
methodically, e.g, on a uniform grid. The nodes are typically
divided into three categories; jammed, boundary node, and
unaffected. A node is considered jammed if it is inside the
jammed area, a boundary node if at least one neighbouring
node is being jammed, and unaffected if it is not jammed
and has no jammed neighbours.

We are herein considering the case when the jammers are
also stationary and may be placed anywhere in the network,
with the kth jammer being located at position (z7,y7).
Furthermore, different from most other approaches in the
literature that makes an isotropic assumption on the jammed
region, i.e., that the jammed region is circular with radius
equal to the jammers transmission range, we here also allow
for jamming signals that are symmetric but not necessarily

isotropic, thereby allowing for elliptical jamming regions
reflecting also the use of directional jammers.

All nodes inside the jammed region are assumed to be
completely jammed. In order to model overlapping regions,
the jammers are in our simulations placed in such a way that
their respective jamming regions overlap, but are allowed
to have different transmission ranges. Figure 1 illustrates an
example of a network topology with three elliptical jammers
with the resulting jammed and unaffected nodes.

1. JAMMER LOCALIZATION METHODS

A conceptually simple localization method is the centroid
localization (CL) technique [6]. The method assumes a
single jammer and that the positions of all the jammed
sensor nodes are known, allowing the jammer’s location to
be estimated as the arithmetic mean of the jammed sensors’
locations. In a two dimensional setup, let the ith jammed
sensor be located at z{ = (z7,y7), fori =1,..., N;, where
N; is the total number of jammed nodes. A single jammer’s
location, (z7,y]), may then be estimated as
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Clearly, the localization accuracy of CL will be highly
dependent on the node distribution in the jammed area,
performing best when the nodes are evenly spread in the
jammed area; if the nodes are spread asymmetrically, this
will cause a shift towards the high node density area in the
resulting jammer location estimate.

One way to improve the CL estimate is to introduce
weights on the jammed node coordinates, as is done in
weighted centroid localization (WCL) [7]. The introduction
of weights enables different emphasis on the different nodes.
If the distance between a node and the jammer can be
estimated, a commonly used weight is one that is inversely
proportional to this distance. The resulting jammer location
is then calculated as
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where w; is the weight for node z;, for example selected as
w; = d; ', where d; is the distance between node z{ and the
jammer. Examples of other weight functions that are used
may be, e.g., the hop count between different nodes [11].
The virtual iterative force location (VFIL) estimator was
introduced in [5] to mitigate the dependence on node density
and distribution limiting the performance of CL and WCL,
as well as to avoid the need to estimate the weights in WCL.
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The multi-jammer scenario was addressed in [10], where
the X-ray method and M -cluster method were introduced.
In the X-ray approach, the jammed area is calculated as the
convex hull of the jammed nodes. Next, a skeletonization of
the boundary region of the jammed sensors is performed
to find the different cluster centers used in the jammer
localization. This step will map the topology of the jammed
region, and the cluster centers are found as the centers of the
maximal (circular) disks inside the jammed area. It should be
noted that the method estimates the number of jammers as
an initial step of the algorithm, assuming a priori knowledge
of the jammer’s average transmission range in order to do
s0; this is a notable weakness of the method as this range is
generally difficult to determine prior to an attack.

The M-cluster method instead aims at clustering the
jammed nodes into M clusters using the fuzzy c-means
algorithm. Next, the jammer localizations are estimated by
applying CL to the different clusters. Assuming knowledge
of the transmission range, an estimated jammed area is
formed. If this area corresponds to the real jammed area, all
jammed nodes should be covered and no boundary nodes.
If the jammed areas do not match, some cluster centers are
moved, and the process iterated. The fuzzy c-means process
requires the user to define the user-defined “fuzzyness”
parameter «, which determines the allowed overlap between
the clustered sets. As the amount of overlap is not known
a priori, and the location estimates are highly dependent on
the cluster points, the choice of o will notably affect the
resulting estimate.

IV. PROPOSED METHOD

In this work, we aim at extending the earlier works by
proposing an iterative method, schematically described in
Figure 2. Initially, it is assumed that the number of jammers
is one, such that N; = 1. An initial localization estimate
is then formed using the CL method. In order to determine
if all jammers have been found, we form an intuitive test
by considering the jammed region generated by a jammer at
the estimated location. Denote the set of jammed nodes, S;,
and the set of neighbour nodes, Sf . If the correct number
of jammers, and their positions, have been determined accu-
rately the estimated jammed area should enclose all of the
jammed nodes and none of the neighbouring nodes, i.e.,

S% =S5 (5)
S, =Sy, (©6)

where S} and S, denote the estimated set of jammed and
neighbouring nodes, respectively. If the neighbouring nodes
are within the jammed region, or jammed nodes are outside
the jammed region, it may be concluded that the number of
jammers was not correctly determined, and we proceed to
increase the number of assumed jammers by one.

In this case, one needs to decompose the jammed region
into smaller overlapping regions spanned by the individual

Start, assume jammer number is one
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Find jammer
location by
means of range
free method

|

Is jammer :
jar Cluster points and
location(s) no

. . —{ increase jammer
consistent with
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Fig. 2. Flowchart of the proposed algorithm.

jammers. We propose doing this by assigning a likelihood
that each node belongs to a given cluster, such that the node
assignment may be viewed as a Gaussian mixture model
(GMM). To form the estimated posterior probabilities, we
here employ the Expectation Maximization (EM) algorithm
(see, e.g., [12]). Next, we apply a K-means clustering with a
soft thresholding! to the estimated posterior probabilities of
each node in order to form the optimal cluster partitioning,

C'. This is done by iteratively partitioning the data into IV;
overlapping clusters by minimizing [13]

Nj N,
C = minimize N, 1{C6) = kY| 2 — mu(C)|2
minimizs, 32N > 1{O() = Kz~ mi(O)]
)

where C'is the cluster partitioning, i.e., C'(¢) indicates which
cluster the ¢th node belongs to, my(C') is the kth cluster
mean as formed using the clustering partitioning C, Ny is
the number of points in cluster k, [N, the number of sensor
nodes to cluster, and 1{C(¢) = k} is the indicator function,
specifying that node ¢ belongs to cluster k.

Having computed the cluster centers, we proceed by
estimating the maximally inscribed ellipsoids in the jammed
area centered at the cluster centers. For each cluster center,
the maximally inscribed ellipsoid is iteratively estimated by
growing a circle centered at the cluster center. As soon
as the circle reaches a neighbour node, the growth in that
direction stops, and the vector from the cluster center to the
encountered node is termed b;. The ellipsoid then continues
to grow in the direction by perpendicular to by, until the
next neighbour node is encountered. When bs encounters

IThe soft threshold is included in order to allow nodes with posteriors
in a given range to belong to more than one cluster.
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Fig. 3. Top: The rMSE for different number of jammers,
showing the X-ray estimate (red, left) and the proposed
method (blue, right). Bottom: The rMSE for different node
densities, showing the X-ray estimate (red, left) and the
proposed method (blue, right)

a neighbour the ellipsoid stops growing. When all the
ellipsoids have been calculated, the covered area is evaluated.
If all jammed nodes are covered, while no neighbour nodes
are, the procedure is terminated. If not, the cluster centers
are moved by a predetermined step size, A, in the direction
anti-parallel to the sum of the vectors, b = b; + bs. Then,
the new cluster center is found as

#rew = @1 \(b, e,) (8)
y'\_Z]new — y”.gold _ )\<b7€y> 9

where (277 §77) and (&7°"¢, §j/°'*) represent the new and
old estlmates of the jammer’s coordinates, (-) represents the
inner product, and e, is the canonical basis vector. The
process is then reiterated. If all the ellipsoids have been
maximized and the estimated jamming pattern is still not
consistent, the number of assumed jammers is increased by
one, and full procedure is repeat as outlined above (see also
Figure 2).

V. NUMERICAL EXAMPLES

We proceed to evaluate the performance of the proposed
method, using the Euclidean distance between the jammers
true and estimated locations as the measure for the accuracy
of the estimates. As a comparison, we show the performance
of the X-ray method, which in [10] was shown to offer
preferable performance to the M -cluster method.

We initially evaluate how well the methods perform when
the number of overlapping jammers in a cluster grows. In
this setup, we use a sensor node density of 300 nodes placed
randomly in the unit square (1m x 1m), and place the sought
number of jammers in such a way that their jamming regions
will overlap, while still being within the unit square. Thus,

no jammers will be placed at the edges of the square in the
simulations.

We randomly select the half semi-axes a and b, and
rotation @, of the jammer transmission ellipses® by drawing
these from uniform distributions, such that a jammer located
at (z., y.) will have a transmission range

(dy cosf — d, sin 0)? N (dy sin@ + d,, cos 0)?

~ s -1 (10)

where d, = ¢ — x., dy = y — y., with a € U(0.15,0.30),
b € U4(0.10,0.25), and 6 € U(—m, 7). The step size is set
to be A = 0.001.

Figure 3 shows the resulting root mean squared error
(rMSE) of the location estimates as a function of the number
of jammers in the cluster (top figure), where

MC Nj

RMSE*M—CFZZG, (1D

J m=1i=1

with ¢; denoting the estimated location error for the i:th

jammer, i.e.,
€ = \/ a: — z

where (x,y7) and (#7,9]) denote the true and estimated

location of the ith jammer, respectively. Here, we use
MC = 1000 Monte-Carlo simulations. The figure illustrates
the preferable performance for the proposed method (blue
boxes, to the right of each pair), as compared to the X-ray
estimate (red boxes, to the left in each pair). As can be seen
in the figure, the proposed method performs better than the
X-ray estimate. It may also be noted that the average error
increases as the number of jammers increase, which should
be expected as the difficulty of the localization problem
increases with the number of jammers present.

Proceeding, we investigate how the methods’ performance
depends on the node density. For this procedure, we fix the
number of jammers to N; = 2, and randomly place 250,
350, and 400 nodes in the area. The results are shown in the
bottom plot of Figure 3, wherein it may also be noted that the
average error decreases as the node density increases, as may
be expected. Again, we note that the presented method offers
preferable performance as compared to the X-ray estimate.

Lastly, we investigate the methods’ probability of esti-
mating the correct number of jammers. The results for the
discussed methods are presented in Figure 4. It should be
noted that the X-ray method uses a heuristic based on the
average transmission range, which will perform worse the
more elliptical the transmission pattern is. Denoting Ay,
the total jammed area and A, the average area covered by

+ (] — 92 (12)

21t should be noted that the presented method offers a similar performance
gain as compared to the X-ray method if the jamming transmission is
restricted to be circular.
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Fig. 4. The probability of correctly estimating the number
of jammers present in the network showing the results for
the X-ray estimate (red, left) and the proposed method (blue,
right).

a single jammer, the number of jammers present in a cluster
is then estimated

Ato
Nest = ceil (At t) (13)
avg

where ceil rounds the result up towards nearest integer. To
allow for a fair comparison with the X-ray method, we for
the proposed method estimate the expected area covered by
a single jammer as A,,, = wab, where @ and b denote the
average half semi-axes. As can be seen in the figure, the
probability of correctly determining the number of jammers
decreases as the number of jammers increase, but the rate
of decrease is slower for the proposed method than for the
X-ray method, indicating that the proposed method is more
robust than the X-ray method for cases when the network is
corrupted by more than one jammer.

VI. CONCLUSION

In this paper, we have explored the problem of localizing
multiple jammers in wireless sensor networks. The pre-
sented algorithm allows for an unknown number of jammers,
without making assumptions on the jammers transmission
range, nor restricting the jammers to be isotropic. Using
an iterative procedure the methods estimates the locations
of the assumed jammers, whereafter the plausibility of the
estimate is determined; if deemed unsatisfactory, the number
of assumed jammers is increased and the procedure repeated.
Numerical simulations illustrate the preferable performance
of the proposed method, both in terms of the lower local-
ization errors and in the likelihood of correctly determining
the number of jammers, as compared to the state-of-the-art
X-ray technique.
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