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Abstract—We consider the design of joint source-channel cod-
ing (JSCC) schemes for two multiterminal source-channel coding
problems - namely, the transmission of a Gaussian source with
side information at the receiver and the transmission of bivariate
Gaussian sources over two independent Gaussian channels. Our
focus is on low-delay transmission. We formulate the design
problem as optimization of an autoencoder (AE) model, and
show that sinusoidal representation networks (SIRENs) are a
good choice due to their inherent periodicity and the ability of
stretched sinusiods to cover the source space. We show that
SIRENs outperform parametric ReLU based networks. The
complexity of the proposed method scales better with source
dimension than the best traditional schemes known in the
literature while their performance is comparable to or better
than that of the best traditional schemes. We demonstrate that the
spontaneously learned encoder mappings share resemblance to
the classical Wyner-Ziv mappings for JSCC with side information,
and exhibits structured patterns in the case of distributed coding
that are interpretable.

Index Terms—Distributed source-channel coding, joint source-
channel coding, SIRENS, deep learning

I. INTRODUCTION

We consider the problem of designing source-channel codes
for two problems in multiterminal information theory - (1)
transmission of a Gaussian source over a Gaussian channel
with side information at the receiver (joint source-channel
coding with side information or the JSCCSI problem); (2)
transmitting correlated sources over orthogonal channels to be
recovered by a central decoder (distributed joint source-channel
coding or the DJSCC problem). Unlike in the single user case,
separate source and channel coding is not optimal for JSCCSI
and DJSCC in general, and more intricate joint source-channel
coding (JSCC) schemes need to be constructed. In this paper,
we consider the design of such JSCC schemes for the low-delay
case (i.e. sources have small dimensions).

Construction of codes for these problems has been considered
in many papers in the literature. For the zero-delay JSCCSI
problem, a hybrid digital-analog (HDA) coding based method
has been proposed in [1], and several reconstruction approaches
have been discussed. For the zero-delay DJSCC problem, a
Shannon-Kotel’nikov (S-K) mapping based encoder has been
designed in [2], and comparison with other schemes including
sawtooth mappings and digital quantization has been presented.
Parametric mappings, including piece-wise linear mappings,
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spirals, sinusoids, and nested hexagons have been designed
for both problems [3]-[6]. Optimization of non-parametric
mappings based on noisy channel relaxation (NCR) has been
implemented for both problems by [7], and it has been improved
using deterministic annealing (DA) in [8].

Recently, there has been a lot of interest in solving commu-
nication problems based on deep learning methods, especially
in the design of JSCC for single-user systems (e.g. [9]-[11]).
Inspired by these successes, we revisit the design of codes for
the JSCCSI and DJSCC problems through the perspective of
deep learning. To the best of our knowledge, deep learning
based design of codes for the two aforementioned problems
have not been considered in the literature in the past.

We model the entire system with an autoencoder (AE), and
we propose the use of encoder and decoder that are represented
with multiple layers of sinusoidal representation networks
(SIRENS). For the case of JSCCSI with bandwidth reduction,
we construct a neural nested lattice structure. The highlights
of our proposed scheme are - (i) for some parameters, they
outperform the best known traditional schemes in terms of mean
squared error, (ii) they have lower decoding complexity than the
best performing traditional baselines, (iii) we show that SIRENs
result in structured mappings that are well suited for the JSCC
problems considered here and that they outperform networks
without such structure, e.g. parametric ReLU networks, (iv)
our training procedure spontaneously learns structured encoder
mappings that are interpretable,

II. PROBLEM FORMULATION
A. Case I: JSCCSI

The block diagram of the JSCCSI problem is presented
in Fig. 1(a). We wish to transmit a source u; € RF1,
after encoding, through an additive white Gaussian noise
(AWGN) channel to a receiver. The receiver also has side
information us € RF2 that is correlated with u;. We
assume that {(uj,uz)} are independently and identically
generated along discrete time. u; is encoded by an encoder
function f4(-) : R¥* — R™, parameterized by ¢ and we
denote the transmitted channel codeword as x;1 = fy(uy).
The channel codeword satisfies a power constraint given by
Py = %E[Hxﬂ”z} < Pr, and without loss generality, it is
assumed Pr = 1. The noisy signal observed at the receiver
is denoted as y; = x; + nj, where n; ~ N(0,021). The
decoder function, g, () : R™ x R*2 — R transforms the
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received signal into the estimate Gy = gy (y1,uz) with the
help of side information.
The distortion between u; and 71y is measured by mean-

squared-error (MSE) and denoted by D1, i.e. D = ﬁEH |lug —
1y [3]
1([2]-
n ~ N(0,02I)
RKx |: R™ /l\ €R™
e Encoder f5 () € + 4!
i, € RM
Decoder g,(*) >
u, € Rk:
(a) JSCCSI
ny, ~ 1110\ )
Rk R™ € R™ i, € Rk
t € Encoder f, () %1€ ) 24l € >
~ N(0, Un2 Decoder gy ()
Rk2 R™ €R"™ i, € R*2
12 € Encoder f¢2( ) %2 € 2 > AN

(b) DJSCC
Fig. 1: System models for the JSCCSI and DJSCC problems.

B. Case II: DJISCC

We show the settings for the DJSCC problem in Fig. 1(b).
We assume a pair of physically separated but correlated sources,
denoted as u; € R¥, for i = 1,2, which are generated
independently and identically along discrete time. The sources
are processed by distinct encoders fs,(-) : RF — R™,
which are parameterized by ¢;. The corresponding channel
codewords are denoted as x; = fy, (u;). We denote the power
of each encoder as P, = n%IE[HXIH]Q] Two types of power
constraints are considered here - total power constraint, for
which Py, + Py, < 2Pr, and individual power constraints,
for which Py, < Pr and Py, < Pr. The codewords are
transmitted over two orthogonal AWGN channels and the
receiver observes y; = Xj + n;, where nl is a zero-mean
Gaussian random variable with variance o2 . The common
decoder, gy(-) : R™ x R™ — RM x RkZ has access to
both received signals, and forms estimates @; for ¢ = 1,2,
respectively. We define the distortion between estimates and
sources with equal weights as MSE and denoted it by D. Hence,
D =D+ Dy = -Elluy — i3] + AE[uz — s3]

C. Optimum Performance Theoretically Attainable

Optimum performance theoretically attainable (OPTA) de-
picts the minimum distortion achievable at infinite delay,
and we include the OPTA in our baseline. From here, we
specifically focus on using bivariate Gaussian sources as the
source information pair, for which the OPTA is well-known.
We consider the case that (ul,uz) ~ N(0,X4, u,), With
Suyup = 02 [ pII ’JII} where o2 is the source variance and p
is the correlation coefficient.

For JSCCSI, OPTA can be computed using the Wyner-Ziv
rate distortion function [12]. We describe channel condition
using the channel signal-to-noise ratio (CSNR) as CSNR. :=
10log, (22 ) (in dB), and distortion level usmg signal-to-

distortion ratio (SDR) as SDR := 101log;, (3* ) (in dB).

The OPTA for distributed coding can be numerically
calculated according to results in [13]. In this case, we
define CSNR := 10log, (£245722) (in dB), and SDR :=
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101log; (Df+§32) (in dB), respectively.

III. PROPOSED METHOD

From this section, we focus on the case of k; = ko and
n1 = ng, and denote k; = ny as equal BW, k; < n; as BW
expansion, and k1 > n; as BW reduction.

A. Autoencoder

We adopt the AE model in our method, represent the encoder
and decoder with deep neural networks, and set AWGN channel
as non-trainable layer in between.

B. Loss

For the problem of JSCCSI, we set the loss function as
the corresponding Lagrangian cost associated with power
constraint, Jy y, = Di + APy. For the case of DISCC, we
consider two kinds of power constraints described previously.
To enforce a total power constraint, we set the optimization
objective as the Lagrangian cost, Jy, ¢, ¢ = D+A(Pys, +Pp, ).
To realize individual power constraints, we set normalization
layers in between the encoder networks and the channels. In
this case, the MSE serves as the loss function that we optimize
in an end-to-end manner. Note in the Lagrangian cost, A is the
slope of the optimal distortion (denoted as D*)-power curve
A = —S=— [14], but nevertheless, we don’t know the exact
curve for 0pt1mal distortion versus power at finite delay in
general. In experiments, we empirically select A by taking as
reference the distortion curves of best traditional schemes as
we know, and this is effective for all scenarios we considered.

C. SIREN

We design the network structure for AE based on the
following observations.

First, periodicity is a universal characteristic of the encoder
mappings in literature for both JSCCSI and DJSCC problems
(e.g., [1]1, [4], [6], [8]. In the Wyner-Ziv structure, it is usually
postulated that the presence of the side information assists at
locating the interval where the source is encoded into by a
periodic transformation. This acts as the channel decoding to
neutralize the corruption from the channel noise and distortion
from the source encoder. For the DISCC problem, the pair of
received signals acts as side information to each other in a
similar way to the JSCCSI problem. Therefore, periodicity is
a desirable property of our network.

Secondly, in [6], a Cramer-Rao lower bound on the distortion

. . . > 1 . .
is derived as given by, Dy > éE“‘f(;(UI)||2]+4(1"’21)‘731 This

bound reveals that the effect of the channel can be suppressed
by designing the encoder mapping with higher stretching factor
Il f(;(ul)||2. A similar observation of this relationship was
made in [2] for the DJSCC problem. On the other hand, too
small distance between different folds of the encoder mapping,
which is stretched by twisting and bending, hinders decoding
the received signal into the correct fold. A proper encoding
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mapping should strike the balance between the two concerns.
Specifically for JSCCSI problem with BW expansion, [6]
uses parametric sinusoids as the encoder mapping. This fact
inspires us to design neural network with sinusoidal activation
functions, which has high flexibility to twist and bend, and let
it spontaneously learn this balance through training.

In addition, recently the work in [15] showed that network
with sine as activation function can be trained in a stable
manner, and the learned smooth latent representations are
reminiscent of spiral-based encoding mappings adopted in [2],
[4]. Meanwhile, sine functions with very low frequency can
approximate piece-wise linear mappings, which were studied
in [2] or have resemblance to the learned mapping in [8]. This
guarantees that networks with sine activation functions can
learn diverse mappings.

Therefore, we represent encoder and decoder networks in
the AE with SIRENSs as in [15].

W(x) =W;(ty_109_90--0vp)(x) + by,
Zi — '(/Ji (Zi) = sin (Wle + bl)

where ¢; : R™: — RY: is the i-th layer of the network,
with M; and N; as the corresponding input and the output
dimensions. W; € RVi*Mi and b; are the learnable weight
matrix and biases of the i-th layer network.

For the case of JSCCSI with equal BW and BW expansion,
we build the encoder (decoder) using 3 (4) layers of SIRENS,
and each layer has 256 hidden units; we concatenate y; and
uz and decode them together. For the case of DISCC, we
construct each encoder using 3 layers of SIRENs with 200
hidden units per layer at the transmitter; at the receiver, we
concatenate y; and yp and decode them together using 4
layers of SIRENs with 300 hidden units per layer. The model
is trained end-to-end.

n ~ N(0,021)
+ + X ER™ €RM i, € Rk
| siREN, ()" é)y_. SIREN; | +{()+| SIREN, |1
> " A
u, € Rk
N Shared coarse lattice b list
» | SIREN, decoder &' = Q (uz)

Fig. 2: Model for the JSCCSI with BW reduction.

For the case of JSCCSI with BW reduction, we consider a
nested framework [16] as shown in Fig. 2. The coarse lattice
Q(+), which acts as the channel code, is learned based on k-
nearest neighbors rule at the transmitter, and trained separately
from other parts. Two candidate methods are considered:
Voronoi cell based method learns the codewords as a set of
general Voronoi cell centers in the source space; or hexagon
based method learns the codewords as centers of regular
hexagons, and the side length is the learnable variable. The
coarse lattice center c* is picked as the one with minimal
Euclidean distance to uj, and in practice we approximate
it using c* = >, Zeffé&'ltfllu;ijc‘m/)ﬂ c; as in [17], with ¢
being the temperature parameter controlling how close this
softmax is to a Dirac Delta function. Since the residual
r = u; — c¢* will have a different distribution than uy, we
integrate information from both the residual and the selected
center and set x; = SIREN{ (r) 4+ SIRENs(c*). The received

signal is first decoded into estimates of residuals as r by
SIREN3. The coarse lattice is shared with the receiver, and
we use a list decoder to select L > 1 candidate codewords
(f;* that are closest to the given side information ug in terms
of Euclidean distance. The list decoder provides robustness
against the channel noise. For each candidate codeword in the
list ¢f, we produce an estimate of u; according to ¢} + -
The L estimates are concatenated and input to SIREN, which
produces the final estimate of uj.

We intialize the SIRENs network according to suggestions
in [15]. At each iteration, we generate sources of batch size
1.024 x 10°, and train the model with Adam optimizer [18].
We decay the learning rate when the loss performance doesn’t
improve, and continue training for up to 26000 epochs for high
CSNRs. For the model using an individual power constraint, we
keep the weights associated with best validation performance.
For the model using a total power constraint, we calculate the
true CSNR in validation, evaluate the gap to the OPTA under
that CSNR, and store the weights of the model that minimizes
the gap to the OPTA.

D. Complexity

For our proposed schemes, the model is trained offline
and hence, the training complexity is not a major concern.
During testing time, for each pair of received signal and side
information, the computational complexity of the proposed
method grows linearly with (k,n) - more specifically, it is
O(Ld? + kdp, + ndp,) where dj, and L are the number of
hidden units and the number of hidden layers, respectively. On
the contrary, all the traditional baselines (except the one from
[2]) that we consider adopt an MMSE decoder for best decoding
performance. The MMSE decoder requires the computation
of multi-dimensional integrals which have to be numerically
approximated in practice. For the JSCCSI problem, the receiver
can either a) perform Monte Carlo simulation for each pair
of received signal and side information, or b) build a table of
decoder mapping offline and decode using the lookup table.
Both approaches require quantization of u; to a grid of values
and the grid precision has to scale proportional to v/D*. Thus,
for the former method, the computation complexity is roughly
dominated by O(c*(1 + CSNR)%n) with constant ¢, which
grows exponentially with (k,n); for the latter method, the
memory requirement will also increase exponentially with
(k,n), which is not affordable. Note that while [2] uses an
decoder whose complexity is lower than that of the MMSE
decoder, its performance is worse. Therefore, the use of SIRENs
results in simple structures that are easy to train, have lower
complexity than the baselines and are flexible to extend to
different source and channel dimensions (for e.g. for BW
k1 :nq =2:3, it is not clear how to design the corresponding
encoder mapping using traditional methods).

IV. EXPERIMENTAL RESULTS

We first present results for JSCCSI with BW 1:1. We train
our model using jointly Gaussian sources with unit variance
and correlation coefficient p = 0.9 and p = 0.99 for different
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Fig. 3: Plot of SDR versus CSNR for JSCCSI, BW 1:1.
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Fig. 4: Learned encoder mappings for JSCCSI, BW 1:1.
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CSNRs. Several baselines are considered based on the best
results available in the literature for different parameters. For
both p = 0.9 and p = 0.99, the first baseline is the HDA-based
scheme by [1] with an MMSE estimator at the receiver. We
provide comparison with the NCR technique-based encoder
and decoder in [7] for p = 0.9. For p = 0.99, we compare our
results to those of the DA method in [8]. A plot of SDR versus
CSNR is shown in Fig. 3 for these schemes and our proposed
scheme. It can be seen that the proposed method performs on
par with other three methods over the entire CSNR range. Note
that our baselines use the computationally complex MMSE
decoders, and sub-optimal decoders with lower complexity
will result in worse performances. We also consider a deep
learning based baseline which replaces the activation function
as parametric ReLU (PReLU), and keeps rest of the structure
the same. The network with PReLU failed to learn a feasible
scheme, and the SDR did not improve with CSNR.

¥l
3
e

. tn 8inos,

-3 2 -1 xp, 1 2 3

(a) Proposed scheme, CSNR=20 dB

Fig. 5: Encoder mappings for JSCCSI with BW 1:2.

We also plot the learned encoder mappings for our proposed
scheme and examine the impact of p and CSNR in Fig. 4.
Firstly, the transmitted signal as a function of the source
symbol varies periodically in a many-to-one modulo pattern
analogous to an effective digital Wyner-Ziv mapping. We
further observe that for the same CSNR, increasing the
correlation coefficient p leads to a denser partition of the source-

(b) Encoder mapping in [6]

i
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Uy
(b) Hexagon-based, CSNR=30 dB

Fig. 6: Encoder mappings for JSCCSI with BW 2:1.

space. Both these properties are intuitively pleasing. A larger
correlation coefficient p leads to more common information
shared between the source and the side information, and thus
the decoder can rely on the side information to a larger extent
so as to neutralize the impairment from the channel noise. This
is how the ‘period’ of the mapping is primarily determined.
When the correlation coefficient is fixed, we observe that the
learned mapping is approximately linear in each period. As the
CSNR increases, the corresponding period is slightly larger.
Also, the mappings are amplified and attempt to fill the space
in a twisted way. This phenomenon results from the trade-off
between the goals of minimizing distortion, for which more
amplified mappings are preferred at high CSNRs, and satisfying
the power constraint, for which the curve is twisted.

Uy
(a) Voronoi cell-based, CSNR=30 dB

OPTA

skoglund's Sinusoids
60 { —¥— proposed

—-- Mapping A

—:- Mapping B

504 -+- PReLu

5 10 15 20 25 30
CSNR (dB)

Fig. 7: Plot of SDR vs. CSNR for JSCCSI, BW 1:2 and 2:1.

Next, we consider the case of BW 1:2. Let 21 ; and 12
represent the first and second components of the transmitted
signal x;. The mapping learned by the proposed scheme is
shown in Fig. 5(a). In the channel codeword plane, a family
of similar space filling curves are learned ; meanwhile, along
the axis of the source, such curves are repeated in a modulo
manner. The overall mapping is therefore shaped by both
effects. Compared with parametric sinusoids designed in [6], the
proposed mapping has a higher extent of stretching, and leaves
tiny phase difference between the learned folds, which reveals
a better balance between source coding and error correction.
Fig. 7 shows the learned scheme has a gain over the baseline
at high CSNR region.

Fig. 6 shows the encoder mappings for BW 2:1 case. Both
the Voronoi cell and hexagon based schemes are capable of
learning the structure of a nested lattice, where the coarse lattice
is repeated periodically over the source space, and the fine
lattices work as source coding within each coarse lattice. Also
Fig. 7 reveals that our proposed Voronoi cell based scheme
performs closely (slightly worse) to mapping A and B in [5],
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which nest hexagons with spiral and discontinuous curve based
mappings, and is better than the PReLU based scheme, which
uses the similar structure as PReL.U based scheme in the BW
expansion case.

OPTA OPTA

309 -+ DA 404 " DA, IPC
—+- PReLU ; Proposed, TPC ¥ ]
—¥- Proposed e —o- Proposed, IPC

251 7 3 —+=- PRelU
.+ === S-K, IPC
5 530
2 50 =
o o =0.
z % 2
) [0 N
154 20
15 i
104 4
104 "¢
5 10 15 20 5 10 15 20 25 30
CSNR (dB) CSNR (dB)
(a) p=0.99 (b) p=0.999

Fig. 8: Plot of SDR versus CSNR for DJSCC, BW 1:1.
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Fig. 9: Learned encoder mappings for DJSCC with p = 0.999,
BW 1:1, under total power constraint.

Next, we consider the case of DJISCC. We first implement
the total power constraint and compare the performance of the
proposed scheme with that of the DA-based method in [8] in
Fig. 8(a) for p = 0.99. Over the entire CSNR range, the two
methods perform comparably. Fig. 8(b) shows a comparison
between DA-based method [8], S-K mappings [2], and the
proposed method under individual power constraint (IPC)
when p = 0.999. We also present the performance of the
proposed method under a total power constraint (TPC). Fig. 8(b)
illustrates that the proposed method is at least as good as the
traditional schemes. It also shows that the freedom of allocating
power to each encoder does not necessarily provide a clear
gain over the scheme under individual power constraint.

Meanwhile, the learned encoder mappings are different from
the ones in [8]. As shown in Fig. 9, the top row represents
the two encoder mappings respectively, and the bottom row
exhibits how the channel space is filled when the same source is
input to both encoder, i.e. p = 1. The top row reveals that each
source serves as the side information to another (especially one
encoding function is likely to exhibit modulo pattern over the
intervals where the other encoder function is linear). As the
CSNR increases, the learned mappings are more wiggly and
closer to being piece-wise linear. The bottom row demonstrates
that the channel space is filled in a pattern similar to spirals.
When the CSNR increases, the distance between arms decreases
and the spirals are approximated by piece-wise linear encoding
functions. Further, in experiments, such patterns are also found
in the learned mappings under individual power constraints.

V. CONCLUSION

In this work, we revisited the problem of transmitting
correlated sources in two different network settings, using
SIRENs based models. The experimental results demonstrated a
comparable or better performance than best traditional schemes
as we know with lower computational complexity. In the future,
we will investigate sources with longer block-length and more
practical channels.
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