
Deep Reinforcement Learning for Resource
Allocation in Massive MIMO

Liang Chen1,2,3, Fanglei Sun1, Kai Li1, Ruiqing Chen1,2,3, Yang Yang1,(Fellow, IEEE), Jun Wang4

1ShanghaiTech University, Shanghai, China
2Shanghai Institute of Microsystem and Information Technology, Shanghai, China

3University of Chinese Academy of Sciences, Beijing, China
4University College London, London, UK

Abstract—As the extensive application of massive multiple-
input multiple-output (MIMO) in 5G and beyond 5G (B5G)
networks, multi-user (MU) MIMO scheduling faces big chal-
lenges on performance enhancement with effective interference
coordination and computational complexity reduction. Plenty of
deep learning and reinforcement learning for wireless resource
scheduling are proposed to solve the above issues via a well
trained network, instead of executing iteration search on each
scheduling period. However, the dimension of the channel state
information and the size of user combination set may increase
exponentially in massive MIMO system, which makes the neural
network over complicated and causes severe convergent issues.
In this paper, a novel Actor-Critic framework is developed to
overcome the above existing issues for the single-cell downlink
multi-user scheduling issue in massive MIMO system. Pointer
network is investigated as the policy network in our proposed
algorithm, which transfers the complicated selection issue among
user combinations to a user sequential selection issue based
on conditional probability. Simulation results show that the
performance of our method is very close to that of the greedy
algorithm with much less computational complexity. Moreover,
our proposal is robust and effective with the increase of the
number of antennas and users.

Index Terms—Massive MIMO, single-cell downlink MU-
MIMO scheduling, pointer network, advantage Actor Critic

I. INTRODUCTION

Massive MIMO has been one of the key technologies for
5G and B5G networks, due to its potential for high capacity,
increased diversity, and interference suppression [1]. Simulta-
neous communication with multiple users creates multi-user
interference and degrades the throughput performance. As
the above issues get worse in massive MIMO systems, in
the traditional wireless communication field, greedy search
based joint of scheduling and precoding algorithms has been
studied to reduce the scheduling complexity in [2] and [3].
Although greedy search can significantly reduced the selection
complexity compared with exhaustive search, the capacity
evaluations based on either linear or non-linear precoding
update on the greedy iterations still costs high computational
and time resource. As the number of antennas increases in
massive MIMO system, this problem becomes more serious.

In recent years, with the rapid development of artificial
intelligence techniques, Deep Learning (DL) techniques have
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achieved impressive results in different fields, such as im-
age processing and natural language processing. In order to
improve the resource allocation performance in MU-MIMO
system, DL based scheduling algorithms have been explored
in [4] and [5], however most of them try to directly find the
relationship between the downlink channel of all users with the
scheduling result among all possible user combinations. These
methods make the DL network really complicated and hardly
to be adapted in particularly massive MIMO systems. As we
know, Reinforcement Learning (RL) technique is capable of
maximizing the cumulative rewards by sequential decision
making, and deep learning is good at automatic feature engi-
neering. Due to deep reinforcement learning (DRL) technique
has the above two advantages, it becomes a hot research topic
for wireless scheduling issues. In [6], the authors proposed an
optimal resource allocation algorithm based on DRL, however,
all user combinations are regarded as the action space in their
proposal, which makes the size of the action space increase
exponentially with the number of users. In order to solve
action dimensional disaster problem, in [7] and [8], the same
value-based multi-agent DRL algorithm are proposed to solve
different resource allocation problems. In [9], they investigate
the joint design of transmit beamforming at the base station
(BS) and phase shifts at the reflecting reconfigurable intelligent
surface (RIS) to maximize the sum rate of multi-user downlink
MIMO systems utilizing DRL.

Based on the above analysis and our previous work on
policy-based DRL scheduling algorithm [5], in this paper we
try to explore a new Actor-Critic [10] framework to overcome
the above issues for the single-cell downlink scheduling issue
in masssive MIMO system. Multi-user scheduling problem
can eventually be abstracted into a combinatorial optimiza-
tion (CO) problem. Pointer network (PN) has been proposed
to solve the problem efficiently through supervised learning
method [11]. It wisely transfers the complicated selection issue
among user combinations to a user sequential selection issue
based on conditional probability, and therefore making the
scheduling issues not depend on complicated neural networks
with big action set any more. However, in many application
scenarios, getting high-quality labeled data is expensive and
may be infeasible. Thus, in [12], the authors combined DRL
and PN to solve the traveling salesman problem (TSP). In
[13], the authors replaced the encoder of the PN by element-
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wise projections to solve vehicle routing problem (VPR).
And in [14], the authors solved the same problem by using
Transformer architecture [15] as encoder. In [16], the authors
had integrates a large number of literatures that use DRL to
solve CO problems.

Motivated by this fact, pointer network is investigated as
policy network in our proposed Actor-Critic framework due
to its simple structure. Spectral efficiency (SE) is considered
as the optimization target. Based on our well trained RL mode,
computational complexity caused by greedy search in a big-
size action set on each scheduling period can be eliminated.
Simulation results show that the performance of the proposed
RL-based model is very close to that of the greedy algorithm
in testing set. Moreover, simulation results also show that our
proposal is robust and effective with the increase of the number
of antennas and users.

The main contributions of this paper are summarized as
follows:
• we proposed a mapping function by DRL method:
πθ(H )→ S , H ,S are the channel space and optimal
scheduled sequence space, respectively. When optimal
policy is obtained by training set, it can be directly
deployed to the BS of downlink scheduling in the sub-
sequent transmit time interval (TTI), we could obtain a
user scheduled sequence without using sophisticate math-
ematical optimization techniques and multiple iterations
to find a optimal user sequence.

• The simulation result show that the performance of our
proposed algorithm is very close to that of the greedy
scheduling algorithm, however, the running time of our
proposed algorithm is ten times faster than that of greedy
algorithm, which can effectively reduce system energy
consumption and has the ability to be deployed online.

II. SYSTEM MODEL AND PROBLEM
FORMULATION

In this section, we assume BS is equipped with Mt transmit
antennas. There are L users in a cell, K users are scheduled
each time, and each user is equipped with a single antenna.
The channel vector from BS to an arbitrary user k is denoted
as hk ∈ C1×Mt .

Fig. 1. System model of massive MIMO

The receive signal at each user can be written as:

yk =
√
Pkhkukxk +

∑
i 6=k

√
Pihkuixi + wk., (1)

where yk is the received vector of user k, Pk is the power
allocated to user k. Assuming that Pt is the maximum transmit
power of the BS, then

∑
k Pk ≤ Pt. Channel noise wk ∼

CN (0, N0),
The signal-to-interference plus noise ratio (SINR) of the

arbitrary user k is given by:

SINRk =
|hkuk|2Pk

N0W +
∑
j 6=k Pj |hkuj |2

, (2)

Where W is the the communication bandwidth. And the
instant SE of user k is:

Rk = log(1 + SINRk), (3)

Subsequently, we could deduce the instant spectral efficiency
of the system as:

Rsum =
∑
i∈[K]

log(1 + SINRk). (4)

Our objective is to find out the optimal scheduled sequence
N = [n1, n2, · · · , nK ] that can maximize the spectral ef-
ficiency of the cell. In our model, suppose the BS could
obtain the instantaneous cell channel state information (CSI).
When scheduled sequence is given, we could select the row
vector of channel matrix based on the scheduled sequence,
and form a new matrix H̃ = HN . Then, we could determine
the precoding matrix by different schemes e.g, Zero Forcing
(ZF). Since we can not increase the power of the signal after
precoding operation, therefore, we assume ||uj || = 1.

III. DEEP REINFORCEMENT LEARNING BASED
ALGORITHM DESIGN

Fig. 2 shows the overall structure of our proposed frame-
work and the brief implementation of each module. More
details are given in the following descriptions.

A. Problem reformulation
In this part, the DRL setting are derived from the opti-

mization equation in Section II. Since RL follows Markov
decision process (MDP) which involves a state set, an action
set and state transition probabilities. For single-cell downlink
MU-MIMO scheduling, in this paper, we try to propose
an Actor-Critic framework, where the explicit expression of
state transition probability can not be ignored. Based on the
optimization problem, we define the state, action and reward
function as follows:
• State : The state st is determined by the channel matrix

H ∈ CL×Mt . Since the neural network can only take real
rather complex numbers as input, thus, the real part and
imaginary part will be separated as independent port, and
the input dimension of state will be RL×(Mt×2)

• Action : In our system, at each scheduling period, base
station will decide which users will be scheduled and
which users will not. Therefore, the action space A is a
subset of {1, 2, · · · , L} and |A| = 2|L|

• Reward : The reward is determined as the cell spectral
efficiency by equation (4) when the instantaneous channel
matrix H and the scheduled sequence N are given.
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Fig. 2. Algorithm structure

B. Policy network

Based on the above analysis, the action space is too large to
use value-based algorithms, (e.g, Deep Q-Learning algorithm).
If value-based algorithm is adopted, the output ports of Q value
network will be x|L|, which is intractable in practice.

Our reinforcement learning algorithm is based on Actor-
Critic framework. Pointer network are introduced in our Actor-
Critic framework as policy network. Since it could use the
chain rule in Pointer network, the joint probability of an
action when state is given could be estimated by the following
equation:

p(n1, n2, · · · , nK |H, θ) =
K∏
i=1

p(ni|n1, · · · , ni−1,H; θ).

(5)
The pointer network has an encoder and decoder. The

decoder network could transform the state matrix into a latent
memory states {e1, e2 · · · , eL}. The initial latent state e0
is unknown, but we could obtain it by learning process.
Combining e0 and latent memory states, we could obtain the
encoder hidden state matrix E ∈ Rh×(L+1), h is the dimension
of hidden state. As for decoder part, the initial latent state will
be the last latent memory state of encoder, and the initial input
of decoder will be the row mean of input state matrix. In the
i-th selection process, the hidden vector is di ∈ Rh×1, and the
weighted vector which could be calculated at the output time
i is:

ωi = softmax(vT tanh(W1E +W2di)), (6)

where W1,W2 ∈ Rw×h, v ∈ Rw×1 are learnable parameters
of the model. When we have the weight vector ωi, the
output will be the index of maximum value of weight vector:

argmaxj(ω
j
i ). Thus, the probability of πθ(a|s) could be

decomposed into:

πθ(a|s) =
∏̀
i=1

ωji . (7)

The flag of decision stops at the `-th decision, the probability
value of ω0

` is the largest one.
Combined with our objective function, the loss function of

policy network is:

Jθ = −EH∼D[
∑
N∈A

Q(N,H)πθ(N |H)], (8)

where D is an unknown distribution, and from Bellman
equation [17]: Q(H, N) = Rsum(H, N) + γV (H ′). In our
scenarios, the trajectory ends directly after the current state
decision is completed, thus, V (H ′) = 0. And the gradient of
Jθ is formulated using the REINFORCE algorithm [18]:

∇θJθ = −EH∼D[
∑
N∈A

(Q(N,H)−b)∇θ log πθ(N |H)], (9)

where b denotes a baseline function that does not depend
on policy θ and could reduce the variance of the estimated
gradient. In real implementation, we could update our network
by Advantage Actor-Critic (A2C) algorithm, we set b = V (s).
Then we could approximate the above gradient by Monte
Carlo method:

θt+1 = θt − µa
B

B∑
i=1

[Rsum(Hi, Ni)−

Vφ(Hi)∇θ log πθ(Ni|Hi)], (10)

where µa is the learning rate of policy network, and B is the
batch size.

1613



Algorithm 1 Proposed algorithm
1: Initialize policy network parameters θ0

2: Initialize Critic network parameters φ0

3: for t = 1→ Epoch do
4: Sample channel matrix {H1,H2, · · · ,HB}
5: Calculate action Ni and probability of π(Ni|Hi; θ

t)
6: Calculate baseline V (Hi;φ

t)
7: Calculate gradient of policy network based (9)
8: Calculate loss of Critic network based (12)
9: Update policy network by (10)

10: Update Critic network by gradient descent
11: end for

C. Value network

The structure of our value network is a multi-layer per-
ception parameterized by φ. Based on Bellman optimality
equation [17]:

Vφ∗(H) = max
N∈A

Qφ∗(H, N) = max
N∈A

Rsum(H, N). (11)

When policy network converge to the optimal policy, then
Vφ∗(H) = R(H, πθ(H)). Thus the Critic is trained with
stochastic gradient descent on a mean squared error objective
between its predictions and the actual spectral efficiency
sampled by the most recent policy:

L(φ) =
1

B

B∑
i=1

|Vφ(Hi)−R(Hi, Ni)|2. (12)

IV. EXPERIMENT RESULTS

In this section, we provide the simulation results to illus-
trate the performance of DRL method and the greedy search
method. Channel state information, e.g, channel matrices H is
obtained from our 5G wireless simulation platform based on
the 3GPP 3D-UMa channel model [19] with ray-tracing data
as input. The simulation parameters are listed in Table I:

TABLE I
PARAMETERS OF SYSTEM SIMULATION

Channel model 3D-UMa
Number of antennas of BS Mt = 16

Number of antennas of a user Nr = 1
Transmit power of BS Pt = 0.25w

Noise power N0 = −195dB
Bandwidth W = 10kHz

User number L = 20, 30
Batch size B = 256

Actor learning rate αa = 1e−4

Critic learning rate αc = 1e−2

Number of training epochs 2000
Number of scheduling periods when training T = 800

In each iteration, we define the performance indicator under
policy πθ as:

η(θ) =
1

L

1

T

T∑
i=1

Rsum(Hi, Ni). (13)

(a) user number K = 20 (b) user number K = 30

Fig. 3. Learning curve between expected return and policy iteration step

(a) user number K = 20 (b) user number K = 30

Fig. 4. Performance comparison between DRL method and the greedy method

In our experiments, procedure is run on the server with 16
cores Xeon(R) Silver 4110 CPU. The ZF preceding scheme
is adopted here and the power is equally allocated among all
scheduled users: Pi = Pt

K . The GRU encoder and decoder is
adopted by our policy network, ReLU activation function is
adopted in the linear layer. A 4-layer perception architecture
is adopted by our Critic network. The learning curves in Fig.
3 show the variation of the average cell spectral efficiency
obtained by Equation (13) with the increase of the number
of epochs for two sampled cells, which may experience
dramatically different transmission environment with different
user numbers. We trained the network two thousand epochs,
which took about 8 hours, and the policy network was finally
able to converge.

In testing stage, we generated additional T = 1100 TTI
channel matrices in the same cell. As for our proposed RL
method, the scheduling sequences could obtained when the
channel matrices are directly sent to the pretrained policy
neural network. Greedy algorithm is adopted by us as the
comparison algorithm, which needs to iterate many times in
each TTI to optimize a scheduling sequence. Fig. 4 shows
the performance comparison of different TTI under greedy
algorithm and pretrained policy neural network. In addition,
we calculate the average system user SE over the whole
TTI channel matrices and count the total running time under
different algorithms. The detailed performance comparison are
listed in Table II.

Although the performance of our reinforcement learning
algorithm can not exceed the greedy algorithm, the running
time of our algorithm are much faster than the greedy method
in the cell with different user numbers on our server. In the
cells with different number of users, the time consumption of
our proposed algorithm is roughly the same. The reason is
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TABLE II
PERFORMANCE COMPARISON

User number SE performance Running time
DRL Greedy DRL Greedy

20 3.79(bps/Hz) 4.06(bps/Hz) 10.77s 105.19s
30 3.62(bps/Hz) 3.67(bps/Hz) 10.14s 271.96s

that the maximum number of streams in different user cells
is the same: Smax = min{Mt, L} = 16. As for the greedy
method, the running time increases with the user numbers in
the cell. The greedy algorithm needs to continuously add new
users until the system is saturated. Once a new user is added,
it needs to recalculate the precoding matrix and SE. If in a
certain TTI, all users are scheduled to the largest SE, then
the greedy algorithm will be repeated L2+L

2 times, while for
DRL, we can get a suboptimal scheduling sequence through
one forward operation of our policy network.

V. CONCLUSION

Focusing on both the capacity optimization and the re-
duction of scheduling complexity for single-cell downlink
scheduling issue in massive MIMO systems, we proposed
a RL-based Actor-Critic framework to provide the optimal
scheduled user combination based on the time-varying chan-
nels. Pointer network is investigated as the policy network
in our proposed Actor-Critic framework, which transfers the
complicated selection issue among user combinations to a user
sequential selection issue based on conditional probability.
Compared with the most DL or RL-based scheduling methods,
with the increase of the number of tranceiver antennas in
massive MIMO system, our proposal can effectively simplify
the network complexity and solve the convergence issues.
Simulation results show that the performance of the proposed
RL-based model is very close to that of the greedy method
for the test data set. Moreover, our proposal is robust and
effective with the increase of the number of antennas and users.
In 5G communication system, the number of transmitting
antennas and users will be much larger than that of the 4G
wireless communication network. Therefore, the traditional
greedy algorithm in 5G network requires a long decision-
making time, which is difficult to meet the needs of 5G
communication network. Our proposed algorithm runs an
order of magnitude faster than the greedy algorithm. Multi-
agent based RL networks will be studied for the performance
optimization of multi-cell massive MIMO system in the future.
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