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Abstract—Cell-free massive MIMO is a distributed version
of cellular massive MIMO in which a user can be served by
all or a subset of distributed access points (APs). In other
words, there are no cell boundaries between APs as opposed
to conventional cellular networks. Such a network can enhance
user experience in terms of spectral efficiency by suppressing
interference from other users using different local or centralized
combining techniques. However, increasing the number of users
and APs make some of these techniques unscalable. In this paper,
we consider the uplink performance of the cell-free massive
MIMO using an estimation-based scalable distributed combining
method and compare its performance with existing distributed
methods that rely on full or partial channel state information.
Simulation results show performance improvements in terms of
computational complexity and spectral efficiency under dense
user distribution.

Index Terms—Scalable cell-free Massive MIMO implementa-
tion, local combining vectors

I. INTRODUCTION

Massive MIMO is a promising technology for future wire-
less networks as it can increase the spectral efficiency of
the users by coherently combining the signals received by or
transmitted from a massive number of antennas at the APs. In
cell-free massive MIMO, which is a new version of network
MIMO, the antennas of each APs are distributed, exploiting the
spatial diversity to mitigate large-scale fading. In this paper,
we consider the uplink of a cell-free massive MIMO network.

In the original cell-free massive MIMO [1], each AP serves
all the users and has network-wide channel state information
(CSI). These assumptions are not practical, as they require
huge fronthaul signaling for both CSI and data sharing, in
addition to a large computational cost when it comes to
more sophisticated reception techniques than maximum ratio
combining (MRC) such as centralized MMSE (CMMSE) [2],
[3].

To reduce the computational cost, local MMSE (LMMSE)
was proposed, computing local combining weights that can be
applied in each AP locally, but it still requires full network-
wide CSI from all AP to all users [3]. To enhance scalability as
a function of user density, [2] proposed a dynamic cooperation
clustering (DCC) method that selects a subset of AP for
serving each user. This method is also referred to as user-
centric cell-free massive MIMO. The user selection can be
applied to the CMMSE, or LMMSE, resulting in a PMMSE
or LPMMSE variant of cell-free massive MIMO. In this partial
processing, the reception of a particular user is defined by only

a subset of other users. However, ignoring the effect of the
users outside this subset, makes partial combining methods
susceptible to interference in scenarios with a large number
of users. In this paper, we propose an alternative method to
determine the local combining vectors, not relying on full
network-wide CSI, but still achieving interference suppression
for all users.

In this paper, we take a new approach in computing MMSE-
based combining vectors. We estimate the LMMSE with less
computational complexity and even without the knowledge of
all channels to all users. Our results show that under full
CSI and high user density, the complexity and performance
of our method are similar to the ideal LMMSE. Compared to
LPMMSE, our method has the advantage that it can eliminate
interference to all users in the network while serving and
having CSI of only a subset of users. Especially in dense
scenarios, our method hence performs better than LPMMSE,
while assuming the same level of CSI.

The rest of this paper is organized as follows. In section
II, we introduce the system model used in this paper and
review channel estimation and uplink data reception. In section
III, we review state-of-art local combining vectors and then
state the problem associated with these methods. Then, we
come up with an estimation-based combining vector which
is supposed to solve the problem of high interference inter-
AP users and high complexity associated with LPMMSE and
LMMSE respectively.

Notaion: In this paper, a boldface lowercase letter denotes
a vector and a boldface uppercase letter denotes a matrix.
The superscripts ()H , ()T and ()∗ denote conjugate transpose,
transpose, and conjugate operation respectively. The cardinal-
ity of set S and expectation operators are indicated by |S| and
E{.}, respectively. Identity matrix with size N ×N is shown
as IN . NC(0,R) indicates a multivariate circulary symetric
complex Gaussian distribution with R as correlation matrix.

II. SYSTEM MODEL

We consider the uplink of a cell-free massive MIMO
network with K single-antenna users, L APs and N antennas
per AP distributed, over a coverage area. The channel between
a particular user k and AP l is denoted by hkl ∈ CN and

hkl ∼ NC(0,Rkl) (1)

where Rkl is the spatial correlation matrix.
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Fig. 1. Cell-Free Network

We assume that users are operating based on a Time Divi-
sion Duplex (TDD) protocol in which every coherence block
is divided into pilot and data transmission phases. Suppose
τc samples can be transmitted in each coherence block. Then
τc = τp + τd with τp number of pilot samples and τd number
of data samples. During pilot transmission which occurs at
the beginning of each coherence block, users send their pilot
sequence to the APs and the APs will estimate the channel
from each user using the received pilot sequence. As there
may not be one pilot per user, some users may have to share
pilot which results in pilot contamination [4].

A. Pilot assignment and User-AP association

For methods such as PMMSE and LPMMSE mentioned
earlier, a user-AP association algorithm is used, which forms
clusters of APs, each cluster serving one particular user. To
decide which APs serve a particular user, we use the pilot
assignment and cluster formation algorithm proposed in [2]
in which eventually a user is served by a master AP and a
subset of nearby APs, together forming a cluster. For a detailed
description of the algorithm, the reader is referred to [2].

B. Pilot transmission and channel estimation

For channel estimation, τp mutually orthogonal τp-length
pilots {φ1,φ2, . . . ,φτp} are used. Suppose user k is assigned
pilot φtk with tk ∈ {1, 2, . . . , τp}. The set of users sharing
pilot φtk with user k is Stk . When users send their pilot to
the APs, the received pilot matrix at AP l will be:

Ypl =
K∑
i=1

√
pihilφTti + Nl (2)

in which Ypl ∈ CN×τp is the received pilot matrix at AP l, pi is
the transmit power of user i , φti ∈ Cτp is the pilot sequence
transmitted by user i and Nl ∈ CN×τp is the receiver noise at
AP l with elements independently distributed as NC(0, σ

2).
For the estimation of user k’s channel, AP l first correlates

the received pilot signal matrix with the normalized pilot

sequence φtk/
√
τp sent by user k as follows (with φtk ∗φ

∗
tk

=
τp):

ytkl = Yplφ
∗
tk
/
√
τp =

∑
i∈Stk

√
piτphil + Nlφ∗tk/

√
τp. (3)

We define ntkl , Nlφ∗tk/
√
τp ∼ NC(0, σ

2IN ), as the entries
of Nl are independent normal random variables and the entries
of ntkl are a weighted sum of the entries of Nl.

From ytkl, the MMSE estimate of channel hkl will be:

ĥkl =
√
pkRklψ−1tklytkl. (4)

With ψtkl defined as below :

ψtkl = E{ytkl(ytkl)
H} =

∑
i∈Stk

τppiRil + σ2IN . (5)

The channel estimation error h̃kl = hkl− ĥkl ∼ NC(0,Ckl) is
independent of ĥkl and

Ckl = E{h̃klh̃
H

kl} = Rkl − pkτpRklψ−1tklRkl. (6)

C. Uplink data reception

During uplink reception, the received signal vector yl ∈ CN
at AP l is

yl =
K∑
i=1

hilsi + nl, (7)

where si ∼ NC(0, pi) is the signal transmitted by user i and
nl ∼ NC(0, σ

2IN ) is the receiver noise at AP l.
Suppose after user-AP association, the subset of APs serving

user k is Mk and the subset of users served by AP l is Dl.
Then matrix Dkl is an N ×N matrix defined as follows:

Dkl =

{
IN k ∈ Dl
0 k /∈ Dl

(8)

In distributed combining, assuming AP l selects a combin-
ing vector vkl for a particular user k, then it obtains a local
estimate of user k’s signal as follows:

ŝkl = vHklDklyl. (9)

After local estimation, all the APs send their local estimate
for the users they are serving to the central processing unit
(CPU) which takes care of collective signal detection for each
user. So for every user k we have

ŝk =

L∑
l=1

ŝkl. (10)

Note that in a partial combining method, the local estimates
of the users that are not served by AP l will be zero, based
on (8) and (9).

By defining a collective combining vector for user k
as vk = [vTk1vTk2 . . . vTkL]T ∈ CNL, a collective chan-
nel of user k as hk = [hTk1hTk2 . . . h

T
kL]

T ∈ CNL and
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Dk =diag(Dk1,Dk2, . . . ,DkL), a block diagonal NL × NL
matrix, (10) is rewritten as

ŝk =

L∑
l=1

vHklDklyl = vHk Dkhksk +
∑
i6=k

vHk Dkhisi + vHk Dkn

(11)
where n = [nT1 nT2 . . . nTL]T is the collective noise.

D. Spectral efficiency

A commonly used bound for spectral efficiency in dis-
tributed combining methods is the ”use and then forget bound”
[2]- [4],

SEk =
τd
τc

log2(1 + SINRk) (12)

where SINRk is defined as below:
SINRk =

pk|E{vHk Dkhk}|2∑K
i=1 piE{|vHk Dkhi|2} − pk|E{vHk Dkhk}|2 + σ2E{‖Dkvk‖2}

(13)
The rationale behind the bound is that CSI is only used in

the APs when designing the combining vectors, but not for
the collective signal detection at the CPU.

III. COMBINING VECTORS

In this section, we define some commonly-used local com-
bining vectors and propose an estimation-based combining
vector as an alternative.

We assume that after user-AP association, user k is served
by AP l.

A. Maximum ratio combining

The simplest form of combining is MRC in which

vkl = ĥkl. (14)

With MRC, the power of the desired signal vHk hk is maximized
but it does not necessarily suppress the interference from other
users. It is a sub-optimal yet low-complexity method.

B. Local MMSE combining

In LMMSE, each AP uses local channel estimates to calcu-
late a local MMSE combining vector for user k. The LMMSE
minimizes the squared error between the transmitted signal
and the locally estimated signal, i.e.:

vLMMSE
kl = argmin

vkl

E{|sk − vHklyl|2}, (15)

which has the following solution:

vLMMSE
kl = R−1yy Rsy, (16)

where Ryy is the correlation matrix of the received signal
vector and Rsy is the correlation vector between transmitted
signal sk and received signal vector yl given the channel
estimates. In LMMSE, each AP uses the channel estimates
for all the users so that Ryy is defined as

Ryy = E{ylyHl |ĥil,∀i} =
K∑
i=1

pi(ĥilĥ
H

il + Cil) + σ2IN (17)

and Rsy is defined as

Rsy = E{yls∗k|ĥil,∀i} = pkĥkl. (18)

Then LMMSE combining vector of user k is then given as:

vkl = pk

(
K∑
i=1

pi(ĥilĥ
H

il + Cil) + σ2IN

)−1
ĥkl. (19)

C. Local partial MMSE combining

An alternative sub-optimal method to reduce complexity is
LPMMSE in which AP l uses only the channel estimates of
the users it is serving to compute the combining vector of user
k. In this case, the combining vector is given as:

vkl = pk

(∑
i∈Dl

pi(ĥilĥ
H

il + Cil) + σ2IN

)−1
ĥkl. (20)

Although LPMMSE may be a low-complexity yet powerful
method, the fact that it ignores the users that are not served
by AP l makes it susceptible in high user density scenarios.
In such scenarios, LPMMSE performance may deviate signif-
icantly from the LMMSE performance.

D. Local MMSE combining vector based on estimation of Ryy
As an alternative to (17), Ryy can be estimated from the

received signal vectors yl at AP l as follows

Reyy =

∑τs
n=1 ynl ynl

H

τs
. (21)

Where Reyy denotes the estimation of Ryy and ynl is the
received signal vector at AP l for the nth of τd data samples in
one coherence block. τs is the number of data samples that are
used in the estimation of Ryy and τs ≤ τd. Then, we replace
Ryy with Reyy in (16) and end up with a combining vector as
follows:

vekl = pk(Reyy)
−1ĥkl. (22)

Note that (21) implies that the AP starts decoding data after the
reception of τs samples, which may impose a delay. However,
the fact that in cell-free networks, the antennas are distributed
and the number of antennas in each AP is relatively small,
makes it possible to estimate Ryy with a small number of
received signal vectors (small value of τs) at any AP, therefore
the delay will be small.

IV. COMPUTATIONAL COMPLEXITY OF COMPUTING
DIFFERENT COMBINING VECTORS

In table I, we will see the number of complex multiplications
per user in one coherence block is given for different methods.
As we can see, the computational complexity of the LMMSE
scales with the number of users K. Also, we can see that
the computational complexity of the proposed method is
proportional to τs and independent of K. As in cell-free
networks, the number of antenna per AP is small, τs can also
be small.
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Fig. 2. Two scenarios with different number of antenna per AP using measurement data

TABLE I
COMPUTATIONAL COMPLEXITY OF COMBINING VECTOR CALCULATION

PER USER IN ONE COHERENCE BLOCK

Proposed Method with User-AP association
N2+N

2
∗ |Mk| ∗ τs + (N

3−N
3

+N2) ∗ |Mk|
Proposed Method with All APs serveing all users

N2+N
2
∗ L ∗ τs + (N

3−N
3

+N2) ∗ L
LPMMSE

N2+N
2

∑
l∈Mk

|Dl|+ (N
3−N
3

+N2)|Mk|
LMMSE

N2+N
2
∗ L ∗K + (N

3−N
3

+N2) ∗ L

V. NUMERICAL RESULTS

In this section, to analyze and compare different methods
discussed in the previous section, we provide numerical results
using measured data from the KU Leuven Massive MIMO
testbed as well as simulated data.

A. KU Leuven testbed data

We use channel measurements from an indoor distributed
massive MIMO testbed. In the testbed, we have 64 antennas.
We divide them into 16 APs each having 4 antennas and
8 APs each having 8 antennas. Considering 15 users in the
room, we plot the cumulative distribution function (CDF) of
the spectral efficiency bound of different methods in Fig. 2.
We assume perfect CSI for this part and that a particular
user is served by all APs. As expected, Fig. 2 shows that, by
increasing the number of samples τs used in (21), the proposed
method approaches the LMMSE . Also, we observe that, by
having a smaller number of antennas per APs, the convergence
of the proposed method’s performance is faster towards the
performance of LMMSE.

B. Simulation data

To be able to evaluate the different methods in networks
with more antennas and users, we used Matlab to simulate

such scenarios. In our simulation, we consider L = 100 and
N = 4 in a 100×100m2 area. We assume imperfect CSI at the
APs. The computational complexity of the different methods
is shown in figure 3. We can observe that:
• The LMMSE computational complexity is increasing

with K which makes it unscalable.
• The proposed method with all APs serving all users has

a constant computational complexity with K increasing.
• The LPMMSE and the proposed method with the user-AP

association have much smaller computational complexity
than the two other schemes. Furthermore, increasing K
decreases the computational complexity of these two
methods. This is because by increasing K, the number of
AP serving a particular user k, |Mk| decreases, as every
APs prefers to serve up to τp users, based on user-AP
association that we used [2].
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Fig. 3. Computational complexity of different methods.
L = 100, N = 4, K = {25, 50, 75, 100} and τs = τd = 90

The CDF function of spectral efficiency is shown in Fig.
4. We observe that with increasing K, the performance of
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Fig. 4. SE CDF, L = 100, N = 4, with increasing number of users from K = 25 to K = 100 and τs = τd = 90

the LPMMSE will degrade and the proposed method will
approach the performance of the LMMSE. This behavior is
expected from the LPMMSE, as it ignores the effect of non-
served users in the combining vector calculation. On the
other hand, with an increasing K, the proposed method’s
performance approaches the performance of the LMMSE and
it outperforms the performance of the LPMMSE. Also, we can
enhance the performance of the proposed method further by
increasing the parameter τs in a scenario with a larger τc, but
at the cost of more computational complexity and delay.

VI. CONCLUSION

In this paper, we have focused on the processing in up-
link cell-free Massive MIMO systems and have proposed an
estimation-based combining vector in which we use received
signal vectors to estimate the correlation matrix part of the
LMMSE. The advantage of the proposed method is that,
unlike the LMMSE, no channel state information is needed
for the other users when calculating the combining vector of
a particular user. Our method has been shown to outperform
the LPMMSE in dense user scenarios. Also, the computational
complexity of the proposed method is independent of the
number of users in the system, which makes it scalable.
Furthermore, by assuming a small number of antennas in each
AP which is the case in cell-free scenarios, a good estimation

of the correlation matrix can be obtained using only a small
number of received signal vectors.
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