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Abstract—Deploying antenna arrays with an asymptotically
large aperture will be central to achieving the theoretical gains
of massive MIMO in beyond-5G systems. Such extra-large
MIMO (XL-MIMO) systems experience propagation conditions
which are not typically observed in conventional massive MIMO
systems, such as spatial non-stationarities and near-field prop-
agation. Moreover, standard precoding schemes, such as zero-
forcing (ZF), may not apply to XL-MIMO transmissions due
to the prohibitive complexity associated with such a large-scale
scenario. We propose two novel precoding schemes that aim at
reducing the complexity without losing much performance. The
proposed schemes leverage a plane-wave approximation and user
grouping to obtain a low-complexity approximation of the ZF
precoder. Our simulation results show that the proposed schemes
offer a possibility for a performance and complexity trade-off
compared to the benchmark schemes.

Index Terms—XL-MIMO, precoding, beamforming

I. INTRODUCTION

Massive MIMO (multiple-input multiple-output) is one of
the central technologies in the fifth generation of mobile
communication systems [1]. In its current implementation,
several antenna elements are compactly arranged at the base
station (BS) to simultaneously serve multiple users. However,
an asymptotically large number of antennas is required to ef-
fectively achieve the theoretical properties of massive MIMO.
These properties include channel hardening, asymptotic chan-
nel orthogonality, among others, and they can be exploited to
significantly improve the performance of wireless systems [2].

A natural way to approach the asymptotic massive MIMO
regime consists of deploying an antenna array whose di-
mensions are orders of magnitude larger than the carrier
wavelength. This MIMO architecture is referred to as extra-
large MIMO (XL-MIMO) in the literature [3]. Potential
application scenarios of XL-MIMO include deploying the
antenna array on the facade of buildings to or along the city
infra-structure [3]. A novel aspect of XL-MIMO compared
to conventional MIMO is the presence of visibility regions.
Due to the large aperture, portions of the array may not be
accessible to some users and the propagation conditions in
different visibility regions may be completely uncorrelated,
a phenomenon known as spatial non-stationarity. Another
crucial difference is that users may not be far apart from
the BS, such that the exchanged signals experience near-field
propagation with spherical wavefronts. To account for these
new propagation challenges in XL-MIMO, adapted channel es-
timation methods [4], [5] and novel low-complexity detection
schemes [6]–[8] have been proposed. However, little attention
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has been given to the design of low-complexity precoders for
XL-MIMO transmissions yet.

Classical precoding schemes such as zero-forcing (ZF)
can be used in XL-MIMO systems to suppress the inter-
user interference. However, their requirements in terms of
computational resources and channel state information (CSI)
can become prohibitively expensive in such a large-scale sce-
nario. In this work, we propose two novel precoding schemes,
namely mean-angle based zero-forcing (MZF) and tensor zero-
forcing (TZF), that aim at solving the complexity problem
of ZF. The proposed MZF solution partitions the antenna
array into smaller sub-arrays and groups users according to
their elevation angles. Based on these sub-arrays, we adopt
a plane-wave approximation that allows us to design lower-
dimensional precoding filters that approximate the perfor-
mance of the ZF precoder, but with much fewer resources.
We finally conduct computer simulations to numerically in-
vestigate the performance of the proposed schemes.

Notation: The transpose, the conjugate transpose, and the
pseudo-inverse of a matrix X are represented by XT and
XH, X+, respectively, and the size of a set X is |X |. The
N -dimensional identity matrix is represented by IN and the
(M×N)-dimensional null matrix by 0M×N . The symbol δ(·)
denotes the Kronecker’s delta function and ⊗ the Kronecker
product. The notation [v]I represents the vector obtained by
selecting the entries of v that corresponds to the index set I.

II. SYSTEM MODEL

We consider a narrow-band XL-MIMO system in which
a transmitter serves U single-antenna users. The transmitter
device is equipped with a uniform rectangular array (URA) of
M = MH ·MV antenna elements. Considering the downlink
operation, the transmitter applies the precoding filter fu ∈ CM
to transmit the data symbol su ∈ C to each user u = 1, . . . , U .
Let hu ∈ CM denote the downlink channel vector. Then, the
received signal by user u can be expressed as

yu = hH
ufusu +

U∑
j 6=u

hH
ufjsj + nu, (1)

where nu denotes a zero mean complex-valued additive
white Gaussian noise (AWGN) component. We assume that
E[sus

∗
j ] = δ(u − j) and E[nun

∗
j ] = σ2

n · δ(u − j). The
average BS transmit power constraint can be expressed as∑U
u=1 PTx,u ≤ PTx, with PTx,u = ‖fu‖22 denoting the power

allocated to user u, and PTx ≥ 0 the total transmit power.

A. Channel Model
We consider that the transmitter antenna array’s centroid

is placed at the origin, while the single-antenna users are
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Fig. 1. The distance between the (m,n)th array element and user u is denoted
by ∆u,m,n = pu − qm,n with azimuth φu,m,n and elevation θu,m,n.

randomly placed around the transmitter. The Cartesian coor-
dinates vector that locates each user is denoted by pu ∈ R3,
u = 1, . . . , U , and the coordinates vector of each array antenna
element is represented by

qm,n =

[
0,m− 1− MH − 1

2
, n− 1− MV − 1

2

]T
· λ

2
, (2)

where λ denotes the carrier wavelength, m ∈ {1, . . . ,MH},
and n ∈ {1, . . . ,MV}. The distance between user u and
the (m,n)th antenna element in Cartesian coordinates is
represented by ∆u,m,n = pu − qm,n. This vector can be
represented in spherical coordinates as

∆̃u,m,n = [ru,m,n, φu,m,n, θu,m,n]
T
, (3a)

ru,m,n = ‖∆u,m,n‖2, (3b)
φu,m,n = arctan ([∆u,m,n]2/[∆u,m,n]1) , (3c)
θu,m,n = arcsin ([∆u,m,n]2/‖∆u,m,n‖2) , (3d)

where φu,m,n and θu,m,n denote the azimuth and elevation
angles, respectively. Assuming line of sight (LOS) propagation
without multi-paths, the entries of the channel vector hu can
be expressed as

[hu]m+(n−1)MH
=
√
γu,m,n · e−j

2π
λ ‖∆u,m,n‖2 , (4a)

m ∈ {1, . . . ,MH}, n = {1, . . . ,MV}, (4b)

with γu,m,n representing the pathloss and antenna gain.
For later convenience, we define the horizontal and vertical

sub-array channel vectors. Let the pth horizontal and the qth
vertical sub-array index sets be respectively defined as

I(p)H = {m+ (p− 1)MH |m = 1, . . . ,MH}, (5a)

I(q)V = {q + (n− 1)MH |n = 1, . . . ,MV}, (5b)

for p ∈ {1, . . . ,MV} and q ∈ {1, . . . ,MH}. The respective
pth horizontal and qth vertical subarray channel vectors are
given by

hH,u,p = [hu]I(p)H
∈ CMH , hV,u,q = [hu]I(q)V

∈ CMV . (6)

In general, for XL-MIMO systems, the angles φu,m,n and
θu,m,n vary over the antenna array, i.e., with different m,n.

However, if the distances ru,m,n are much larger than the array
dimensions MH · λ2 , MV · λ2 , we can adopt the well-established
plane-wave approximation [9] to obtain

φu,m,n ≈ φu = arctan ([pu]2/[pu]1) , (7)
θu,m,n ≈ θu = arcsin ([pu]2/‖pu‖2) , (8)

and γu,m,n ≈ γu,∀m,n. In this case, the channel vector hu of
the URA can be approximately written as a Kronecker product
of two uniform linear array (ULA) vectors corresponding to
the horizontal and vertical sub-arrays

hu ≈
√
γu · (hV,u ⊗ hH,u) , (9a)

[hH,u]m = e−jπ(m−1−MH−1

2 ) cos θu sinφu , (9b)

[hV,u]n = e
−jπ

(
n−1−MV−1

2

)
sin θu , (9c)

for m ∈ {1, . . . ,MH}, and n ∈ {1, . . . ,MV}. Furthermore,
the horizontal and vertical sub-array channel vectors (6) can
be approximated as hH,u ≈ hH,u,p, and hV,u ≈ hV,u,q , ∀p, q.

III. PRECODING METHODS

A. Classical Zero-Forcing (ZF)
The classical ZF precoder fZF,u is designed to satisfy the

zero inter-user interference condition

H̃ufZF,u = 0(U−1)×1, (10)

where H̃u = [h1, . . . ,hu−1,hu+1, . . . ,hU ]
H denotes the

(U−1)×M -dimensional inter-user interference channel matrix
relative to UE u. This condition can be satisfied by projecting
hu onto the null-space of H̃u if U ≤M [2]. The ZF precoder
is then given by

fZF,u =

√
PTx,u

‖f̃u‖2
f̃u, f̃u = (IM − H̃+

u H̃u)hu. (11)

B. Mean-Angle Based Zero-Forcing (MZF)
For XL-MIMO systems, the plane-wave approximation (9)

is generally not satisfied, as the antenna array dimensions
are in a similar order of magnitude as the user-to-transmitter
distances. Hence, to cancel the inter-user interference, the full
classical ZF solution (11) has to be calculated. For larger
arrays and many users, however, this can become prohibitively
complex. We therefore propose a low-complexity approxima-
tion below, which is based on a plane-wave approximation
by partitioning the URA into smaller sub-arrays and grouping
users accordingly. We consider a partitioning of the URA into
vertical sub-arrays and a corresponding user grouping in the
elevation domain. However, the same approach can also be
applied in the horizontal/azimuth domain.

a) Inter- and intra-group zero-forcing: The basic idea
of the proposed approach is to group users with similar
elevation angles, such that interference-cancellation between
different groups (inter-group interference) can (approximately)
be performed in the elevation domain, whereas interference-
cancellation between users of the same group (intra-group-
interference) can be performed in the azimuth domain.

Let Ng be the number of user groups. Group i ∈
{1, . . . , Ng} contains users Gi ⊆ {1, . . . , U}, Gi ∩ Gj =
∅, Gi = |Gi| and is served from the vertical sub-array
consisting of MV,i consecutive rows of the URA indexed by

1622



set IV,i ⊆ {1, . . . ,MV}, |IV,i| = MV,i, IV,i ∩ IV,j = ∅.
Group i is thus served from a sub-array consisting of MV,i·MH
antenna elements. Notice, this implies a beamforming gain
loss of MV,i/MV compared to classical ZF and TZF to be
presented in Section III-C.

To perform intra-group-interference cancellation, we as-
sume that the horizontal sub-array channel vector is approx-
imately constant over the MV,i rows of the sub-array, which
is satisfied if the elevation-angle does not vary too much over
the sub-array. Specifically, we set h̄H,u = 1

MV,i

∑
`∈IV,i

hH,u,`

and assume hH,u,` ≈ h̄H,u,∀` ∈ IV,i. We then calculate the
azimuth beamformer fH,u ∈ CMH of user u ∈ Gi to satisfy(

h̄H,j
)H

fH,u = 0, ∀j ∈ Gi \ u. (12)

This can be solved similar to (11), with feasibility condition
Gi ≤ MH. Obviously, if the approximation hH,u,` ≈ h̄H,u is
not satisfied, residual intra-group-interference will occur.

For inter-group-interference cancellation, we adopt a plane-
wave approximation for the elevation angles over the sub-
arrays. Specifically, consider sub-array IV,i; we assume
θu,m,n ≈ θ̄u,i = 1

MV,i·MH

∑
n∈IV,i

∑
m∈{1,...,MH} θu,m,n;

notice, in general θ̄u,i is different for distinct sub-arrays
IV,i and IV,j . Moreover, we assume that the angles of the
users within a group are approximately equal θ̄`,i ≈ θ̄

(j)
i =

1
Gj

∑
k∈Gj θ̄k,i,∀` ∈ Gj .1 We then calculate the elevation

beamformer fV,i ∈ CMV,i of group Gi to satisfy(
h
(j)
V,i

)H
fV,i = 0, ∀j ∈ {1, . . . , Ng} \ i, (13)

where h
(j)
V,i ∈ CMV,i is obtained as in (9c) with elevation angle

θ̄
(j)
i . Again, this can be solved similar to (11), with feasibility

condition Ng ≤ MV,i. Finally, the sub-array beamformer of
user u ∈ Gi is obtained by the Kronecker product

fMZF,u = fV,i ⊗ fH,u, fMZF,u ∈ CMV,i·MH . (14)

b) User grouping and array partitioning: The separa-
ble beamforming approach described above imposes several
assumptions and conditions that should be satisfied to avoid
excessive residual inter-user interference. This can be assured
by appropriate user grouping and array partitioning.

First of all, we have to satisfy the feasibility conditions
Gi ≤MH, Ng ≤MV,i, ∀i ∈ {1, . . . , Ng} to enable inter- and
intra-group-interference cancellation. In addition, the variation
of elevation angles amongst users of the same group, as
well as, the variation of each user’s elevation angles over the
antenna elements of a sub-array should be sufficiently small to
validate the mean-angle based channel vector approximations.
We propose a greedy approach to achieve these targets:

1) user grouping under the assumption MV,i = bMV
Ng
c,∀i;

2) optimization of the array partitioning given fixed user
groups.

The proposed greedy user grouping approach is summarized
in Algorithm 1. In this algorithm, we group users with small
angular distances using a distance threshold θt. We increase θt
within the algorithm until the number of obtained groups Ng is
sufficiently small to satisfy the feasibility condition Ng < MV

Ng
,

assuming equal sub-array partitioning.

1Notice, the two indices i, j in θ̄(j)i are required, since we first average
over the sub-array IV,i and then over users Gj .

Algorithm 1: Elevation angle based user grouping.
Input: Average user angles θu, grouping threshold θt
Main:

1 repeat
2 Initialize group counter i = 0
3 Initialize set of ungrouped users Ḡ = {1, . . . , U}
4 repeat
5 Increase group counter i = i+ 1
6 Sort set Ḡ according to increasing angle θu
7 Find user u ∈ Ḡ with smallest angular distance to

neighbouring users
8 Group user u with at most (MH − 1) closest

neighbors with angular distance less than θt in Gi
9 Update set of ungrouped users Ḡ = Ḡ \ Gi

10 until Ḡ = ∅;
11 Set number of groups Ng = i
12 Increase grouping threshold θt = 2 · θt
13 until Ng < MV

Ng
;

Output: User groups Gi, ∀i ∈ {1, . . . , Ng}

Depending on the elevation angles of the users, the proposed
greedy user grouping may potentially lead to strongly unbal-
anced group sizes. To compensate for this, we optimize in a
second step the sub-array sizes MV,i, attempting to achieve
similar ratios MV,i/Gi,∀i.

max
MV,i∈N,∀i

min
i∈{1,...,Ng}

MV,i

Gi
s.t. MV,i ≥ Ng,

Ng∑
i=1

MV,i ≤MV.

This linear integer programming problem can be solved to
optimality by an appropriate integer programming solver, or
it can be solved approximately by standard integer-relaxation
techniques [10].

C. Tensor Zero-Forcing (TZF)

The TZF precoder aims at satisfying the zero inter-user
interference (10) by exploiting some algebraic properties of
bi-dimensional LOS channels [11]. This precoder is able
to approximate the interference cancellation performance of
classical ZF with much less stringent CSI and computational
requirements.

The TZF precoder adopts the plane-wave approximation (9)
and assumes that all scheduled users have approximately the
same elevation (or azimuth) angles. Let

H̃H,u = [hH,1, . . . ,hH,u−1,hH,u+1, . . . ,hH,U ]
H
, (15)

H̃V,u = [hV,1, . . . ,hV,u−1,hV,u+1, . . . ,hV,U ]
H
. (16)

denote the horizontal and vertical inter-user interference chan-
nel matrices, respectively. The TZF precoder is given by [11]

fTZF,u =

√
PTx,u

‖f̄u‖2
f̄u, (17a)

f̄u = [IM − (PV ⊗ PH)] (hV,u ⊗ hH,u), (17b)

with PV = H̃+
V,uH̃V,u and PH = H̃+

H,uH̃H,u representing
projectors onto the row-space of H̃V,u and H̃H,u, respectively.

If the equal elevation angles assumption is satisfied, then the
rows of the vertical inter-user interference matrix (16) become
highly collinear, and the vertical-domain processing does not
improve the interference cancellation. We leverage this fact to

1623



further simplify the TZF precoder by applying only horizontal-
domain processing. In this case, we set PV = IMV and further
express (17b) as

f̄u = (hV,u ⊗ hH,u)− [hV,u ⊗ (PHhH,u)] (18a)
= hV,u ⊗ [(IMH − PH)hH,u] . (18b)

Equation (18) reveals that the TZF precoder can be seen as
the Kronecker (tensor) product between a horizontal-domain
ZF precoder and a vertical-domain maximum-ratio transmis-
sion (MRT) precoder. Since the interference cancellation is
performed solely in the horizontal domain, the feasibility
condition is then U ≤MH.

D. Complexity Analysis
The classical ZF precoder requires instantaneous CSI from

all U users and (11) can be calculated by O(M3
H · M3

V)
operations. By contrast, MZF requires only partial CSI (hor-
izontal sub-array channels hH,u,` and the elevation angles
θu,m,n) and its beamforming filters can be computed by
O(M3

H) +O(M3
V,i). Likewise, TZF demands only partial CSI

(horizontal sub-array channels hH,u,`) and its precoding filters
can be obtained by O(M3

H) operations. It is clear from this
short analysis that, in XL-MIMO systems, MZF and TZF are
significantly less complex than the standard ZF solution.

IV. SIMULATION RESULTS

In this section, we present the computer simulation experi-
ments designed to analyze the performance of proposed pre-
coding schemes. The proposed precoding schemes exploit the
plane-wave approximation (9) and assume that the elevation
angles of different users are approximately the same or they are
spread around clusters. To investigate the precoders’ sensibility
to these assumptions, we randomly place the users around the
transmitter in a way that allow us to control the assumptions’
plausibility. Specifically, we randomly generate the spherical
coordinates pu = [ru, φu, θu]T of each user u as follows.
• The radial coordinate ru is sampled from a uniform

random variable distributed in [d, 2d], where d is a
parameter that controls how far the user is placed from
the transmitter’s antenna array;

• The azimuth angle φu is sampled from a uniform random
variable defined in [−saz, saz], with saz representing the
azimuth spread angle;

• To generate the elevation angles, the U users are first
divided into Nc groups of dU/Nce users. Group g ∈
{1, . . . , Nc} contains users Lg ⊂ {1, . . . , U}, Li∩Lj = ∅
and is associated with a mean elevation cluster angle µg
and intra-cluster elevation spread σg . The elevation angle
θu of user u ∈ Lg is therefore sampled from a Gaussian
distribution with mean µg and standard deviation σg .

It is important to recall that the MZF and TZF precoders
have different assumptions concerning the elevation angles
of the scheduled users. As described in Section III-B, MZF
allows inter-group angular variation but it expects small intra-
group angular variation. By contrast, TZF assumes that the
elevation angles of all scheduled users are approximately the
same. Therefore, to fairly compare these precoding schemes,
MZF schedules all U users in the same time-frequency re-
sources elements, whereas TZF employs orthogonal schedul-
ing to serve user groups Gi with the same elevation angles on
different resource elements.

The figures of merit considered in our simulations are
the signal to interference and noise ratio (SINR) and the
achievable sum-rate. We calculate the SINR of user u in group
i as

SINRu,i =
|hH
ufu|2∑

p∈Gi
p 6=u
|hH
ufp|2 +

∑Ng
6̀=i
∑
q∈G` |hH

ufq|2 + σ2
n

.

The first term in the denominator represents the intra-group
interference, while the second term the inter-group interfer-
ence. Notice that the inter-group interference term is zero when
orthogonal scheduling is employed. The achievable sum-rate
can be calculated as

SR =

Ng∑
i=1

∑
u∈Gi

log2 (1 + SINRu,i) . (19)

In case of orthogonal scheduling, the achievable sum-rate (19)
is normalized as SR = SR/Ng to account for the time-sharing
loss.

The following parameters were considered in the performed
simulation experiments. The transmitter antenna array contains
M = 2000 elements with (MH,MV) = (50, 40) to serve
U = 20 single-antenna users in total. The effects of the
individual antenna gain and path-loss are not regarded in
the reported simulations, i.e., gu,m,n = 1, ∀u,m, n. The
carrier frequency is 2 GHz, the AWGN noise power is set
to σ2

n = 10−2, and the initial grouping threshold is set
to 2◦. Furthermore, the mean elevation cluster angles µg ,
g ∈ {1, . . . , Nc}, are sampled from a uniform random variable
defined in [−sel, sel], where sel represents the elevation inter-
cluster angle spread. Unless stated otherwise, the azimuth
spread is set to saz = 60◦, the intra-cluster elevation spread
to σg = 1◦, ∀g, and the inter-cluster elevation spread to
sel = 60◦. The results reported in the section were obtained
from 1000 independent experiments.

In the first experiment, we evaluate the effect of the distance
between users and transmitter on the SINR performance. Fig-
ure 2 depicts the median SINR as a function of the parameter
d that determines the users’ radial coordinate. We observe
that MZF and TZF are quite sensitive to this parameter,
while the standard ZF method exhibits some robustness. As
we do not consider pathloss, the SINR degradation observed
in the proposed methods is explained by the plane-wave
approximation. The closer the users are to the transmitter,
the less accurate the plane-wave approximation (9) is. As a
consequence, MZF and TZF are not able to properly cancel
the inter-user interference. We also observe that the solutions
employing orthogonal scheduling provide larger SINR values.
In this case, fewer users are scheduled together in the same
time-frequency resources, hence less interference is produced
in the considered time-frequency resource elements.

In the second experiment, we assess the influence of the
intra-cluster elevation spread σg on the SINR performance.
The median SINR is plotted as a function of the intra-cluster
elevation spread in Figure 3. In this experiment, the intra-
cluster elevation spreads σg , g ∈ {1, . . . , Nc}, are set to the
same value σ, i.e., σ1 = · · · = σNc = σ. Moreover, the
product d·λ2 is set to 750 meters. As we can see in Figure 2, the
plane-wave approximation holds for such a distance. Figure 3
indicates that MZF is sensitive to the intra-cluster elevation
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Fig. 2. Median SINR performance as a function of the distance parameter d,
saz = sel = 60◦, σg = 1◦ ∀g, Nc = 2 elevation clusters.
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Fig. 3. Median SINR performance as a function of the intra-cluster elevation
spread σ, saz = sel = 60◦, d · λ

2
= 750 meters, Nc = 2 elevation clusters.

spread parameter. This is because the inter-group-interference
cancellation of MZF, which relies on the mean elevation
angles, becomes less accurate with the increase of σ, causing
residual inter-user interference. By contrast, TZF exhibits more
robustness to the increase of the intra-cluster elevation spread.
Although large spreading values violate the equal elevation
angles assumption, these results indicates that the azimuth-
domain based interference cancellation is enough to mitigate
the inter-user interference.

In the final experiment, we investigate the achievable sum-
rate performance of the proposed methods for different number
of user clusters. The target of this experiment is to provide in-
sights into the trade-off between the beamforming gain losses
of MZF and the orthogonal scheduling time-sharing losses. In
Figure 4, we plot the achievable sum-rate empirical cumulative
distribution function (cdf) for d · λ2 = 750 meters, intra-
cluster elevation spread of σ = 1◦, and number of clusters
Nc ∈ {2, 3, 4}. This figure indicates that the throughput of
the orthogonal scheduling-based precoders and MZF tend to
decrease with the increase of the number of clusters. When
this number increases, the orthogonal scheduling based pre-
coders need to use more time-frequency resources, therefore
reducing the spectral efficiency. Furthermore, MZF tends to
form smaller sub-arrays to keep the angular variation low
when the number of user cluster increases. Since the sub-
array dimensions decrease, the beamforming gain is smaller,
reducing the throughput.

V. CONCLUSION

In this work, we propose novel precoding schemes for XL-
MIMO transmissions that aim at solving the complexity issue
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Fig. 4. Achievable sum-rate empirical cdf, saz = sel = 60◦, σg = 1◦ ∀g,
d · λ

2
= 750 meters, Nc ∈ {2, 3, 4} elevation clusters.

of classical precoding schemes, such as ZF. The proposed
MZF and TZF solutions resort to a plane-wave approximation
to partition the transmitter’s array into smaller sub-arrays and
to group users according to their elevation angles, thereby
allowing to approximately factorize the ZF filter into a Kro-
necker product. Such a factorization significantly reduces the
CSI and computational requirements as compared to the classi-
cal ZF precoder. Our simulation results show that the proposed
schemes are capable of well-approximating the benchmark
solutions. The performance gap gets tighter as the plane-wave
approximation becomes more accurate and when the intra-
cluster elevation spread decreases. We also notice that the
beamforming gain is reduced as the number of user clusters
increases. By carefully scheduling the users, it is possible to
reduce the number of elevation clusters and the intra-cluster
elevation spread, offering a possibility for a performance and
complexity trade-off.
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