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Abstract—This paper proposes a novel real-time and low-
complexity solution for the joint power allocation and access
point scheduling problem in the uplink cell-free massive multiple-
input multiple-output (MIMO) with a serial bandwidth-limited
fronthaul architecture. We devise a hybrid optimization frame-
work based on a novel deep neural network architecture for
access point scheduling and a low-complexity convex formulation
for power allocation. The simulation results demonstrate the
effectiveness of the proposed solution in which the trained net-
work exhibits competitive performance compared to state-of-art
optimization algorithms, however with a significant computation
time reduction. It will be also discussed that the neural-based
architecture is very advantageous for dynamic massive MIMO
with time-varying number of users.

I. INTRODUCTION

Cell-free (CF) massive multiple-input multiple-output (m-
MIMO) [1][2] is a key technology enabler for 6G and beyond
wireless networks featuring low-complexity high-throughput,
ultra-reliable and low-latency applications [3]. The user-centric
approach enabled by the CF m-MIMO [2] is hindered by the
large amount of traffic to be fronthauled between the remote
access points (AP)s and the central processing unit (CPU).
With the limited bandwidth available in the serial fronthaul
(FH) architecture [2][5] with multiple access points (AP)s
sharing the same fronthaul wires as depicted in Fig. 1, joint
power control and AP scheduling becomes crucial to minimize
the co-channel interference and improve the overall spectral
efficiency (SE).

Power control using optimal and sub-optimal solutions has
been extensively studied for a general CF m-MIMO (see for
instance [1][2]). Given the intrinsic complexity involved in
most of the optimization based techniques for the power and
AP scheduling, the research has evolved towards leveraging
machine learning (ML) to replace the complex optimization
stage with a well-trained deep neural network. In [7], a multi-
layer perceptron (MLP) model trained by an unsupervised
ML has been applied to the uplink (UL) CF m-MIMO power
control. The proposed algorithm can closely approximate the
optimum solutions produced by convex solvers while vastly
reducing the complexity. In [8], a (supervised) deep artificial
neural network is developed for the UL power control of a
CF m-MIMO system. The unsupervised ML scheme in [7]
was recently extended to the power allocation problem for the
downlink in [9].

Unlike the UL power-only control problem that is convex
and can be efficiently solved using popular linear programming

Figure 1. CF m-MIMO with a serial wired fronthaul.

solvers [1], the real-time aspect is much more critical in the
joint power control and AP scheduling given the non-convexity
of the original problem and the non-polynomial complexity
with respect to the number of user equipments (UE)s and APs.
While efficient architectures have been devised in the literature
for the power allocation, no work has been dedicated to the AP
scheduling using deep neural networks. In [6], to address the
UL CF m-MIMO scalability with a limited bandwidth serial
fronthauling architecture, a low-complexity iterative power
allocation and AP scheduling algorithm has been proposed
that is essentially driven by the channel hardening. Although
the proposed algorithm requires a limited number of super-
iterations between the power optimization and AP scheduling
before the convergence, the time-complexity of the proposed
framework is still challenging for real-time deployments of
large scale systems.

In this paper, we propose a complexity-efficient deep neural
network architecture that undertakes the joint power control
and AP scheduling in a near real-time fashion for UL CF m-
MIMO. The main contributions of this paper are as follows:

• Design and formulation of the AP scheduling as an image
segmentation problem and hiring the well-known U-Net
neural network [11] as the solution.

• Proposing a novel objective and training procedure that
ensures the neural model produces near-binary decision
scores for UE-to-AP assignments, a problem that has not
been tackled in the regular U-Net.

• Offering an end-to-end real-time low-complexity joint
AP scheduling and power control and demonstrating the
efficiency of the architecture in scenarios with time-
varying number of UEs.

• A thorough performance and computation-time analysis
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of the proposed architecture against a state-of-art con-
vex optimization algorithm and a widely-used nonlinear
mixed integer programming solver.

In section II, we briefly introduce the system model. In section
III, the optimization algorithm [6] used to feed the artificial
neural network (ANN) is summarized. Next, in section IV we
cast the AP scheduling as an image segmentation problem and
propose an ANN based on the U-Net [11] for this classification
problem. Numerical results are provided in section V and
conclusions are drawn in section VI.

II. SYSTEM MODEL

We consider a CF m-MIMO as depicted in Fig. 1 with
K UEs and M (> K) APs with N antennas per AP. The
different APs are interconnected to the CPU through a limited
bandwidth serial FH link. We assume a time division duplexing
(TDD) protocol of the UL and downlink in which the TDD
frame of length τC samples is composed of UL training (τP
samples) and payload (τD samples) segments followed by a
guard time, and a segment for downlink data.

We assume the same channel estimation protocol as in [1]
to acquire the channel [gm,k]n between the kth UE and the
nth antenna of the mth AP (the subcarrier index is omitted
for the sake of notational simplicity). It can be shown that
the variance of the channel estimates E{‖ĝm,k‖2} is equal to
αm,k = τP ρβ

2
m,k/(τP ρβm,k + σ2

w) where βm,k corresponds
to the large scale fading, ρ is the maximum transmit power
per UE, and σ2

w is the additive white Gaussian noise (AWGN)
variance. With each AP applying conjugate beamforming to
equalize the received noisy data, at most K equalized samples
per AP can be reported and the CPU has the task to combine
them. With the serial FH architecture in Fig. 1, the normalized
bandwidth of the FH wire denoted by Ĉ is limited and is,
typically, smaller than MK. Hence an optimization algorithm
is needed to determine which equalized samples should be
reported by each AP. For this purpose, we define the M ×K
association matrix C with the (m, k)th entry cm,k = 1 when
the CPU receives the kth UE equalized data from the mth AP,
and cm,k = 0 otherwise. As a matter of fact, it can be shown
that the signal to noise ratio (SNR) [6] can be derived as

γk =
N
(∑M

m=1 cm,kαm,k

)2
ηk

K∑
k′=1

(

M∑
m=1

cm,kαm,kβm,k′)ηk′ +
σ2
v

ρ

M∑
m=1

cm,kαm,k

. (1)

III. JOINT ACCESS POINTS SCHEDULING AND POWER
ALLOCATION

We propose, in this paper, to maximize the worst case SNR
subject to a per-UE maximum power ρ and to a maximum FH

bandwidth Ĉ as in [6]:

max
η,C

min
k
γk(η,C)

st. 0 ≤ ηk ≤ 1, ∀k
M∑
m=1

K∑
k=1

cm,k ≤ Ĉ

cm,k ∈ {0, 1} , ∀m, k. (2)

Given i) the existence of binary entries of the association
matrix C and ii) the optimization variables {cm,k} and {ηk}
appearing as products in both the numerator and denominator
of the SNR given by (1), the above form can be presented as
a mixed integer programming problem and, hence, admits a
non-convex form [10].

Algorithm 1 Iterative power allocation and AP scheduling.

Init: κ = 0, set C = C(0) and η(0) = optimize(C(0)).
1) AP scheduling: C(κ+1) = optimize(η(κ)).
2) Power allocation: η(κ+1) = optimize(C(κ+1)).
3) Increase the super-iteration index: κ← κ+ 1.
4) Repeat steps (1)-(3) until convergence.

The formed optimization problem in (2) was tackled in
[6] by formulating a sequence of linear programming (LP)
problems. The master algorithm, as depicted in Alg. 1, then
iterates between two steps, i) finding the optimal power
coefficients assuming a known association matrix and ii)
AP scheduling given the known power coefficients from the
previous step. While the power allocation can be cast as
a linear-program, in [6], the AP scheduling has been also
formulated as an LP by relaxing the binary constraints in
(2) and proposing an iterative channel hardening balancing
(IHB) procedure (see Alg. 3 in [6]). Results in [6] verify
the capability of the new IHB algorithm in solving (2) and
providing competitive performance compared to off-the-shelf
combinatorial optimization solvers.

While the proposed algorithm in [6] shows a descent
performance improvement in contrast to the state-of-the-art,
the iterative nature of the AP scheduling part may make the
overall architecture not immediately applicable for real-time
deployments with time varying system configurations.

IV. ANN BASED SOLUTION FOR ACCESS-POINT
SCHEDULING PROBLEM

In this paper, we propose a novel architecture sketched in
Fig. 2 that is based on ANN to solve the AP scheduling
problem knowing the input system parameters, while the
power allocation problem can be still solved using either LP-
based optimization techniques [1] or near-optimal solutions
[4], which both provide near real-time solutions for the power
allocation problem.

A. Problem statement and model architecture

Let X denote a matrix of size M × K that is formed by
taking the set of parameters β as the input to the network.
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Figure 2. The overall optimization architecture.

The architecture employed in this paper as depicted in Fig. 3 is
inspired by a classification task handled by the U-Net network
first proposed in [11]. The network receives a single-channel
β input passing through a number of convolutional operations
followed by the non-linearity that leads to the contraction
of the input image and the creation of an encoded image.
Each rectangular block or hidden layer in the ANN of Fig.
3 is represented by a tuple (a, b, c, d, e, f) that demonstrates
a convolutional layer where a and b are the number of input
channels and output filters, respectively, c denotes the kernel
size, the tuple (d, e) corresponds to the size of the input image,
and f is the type of the non-linearity. The encoded image is
then sent to the expansion phase that aims to reconstruct an
image in the same size of the input matrix.

The network output will be now represented by a probability
matrix Y of size M×K where the (m, k)th entry of the matrix
is denoted by a sigmoid function that measures the probability
of assigning the mth AP to the kth UE. Assuming Y as the
M ×K output matrix, the corresponding (m, k)th entry can
be written as follows:

Y mk = p(cmk = 1|X; θ) =
1

1 + exp(−amk[θ])
, (3)

where amk[θ] denotes the (m, k)th activation function that is
constructed by applying the input matrix X to both contraction
and expansive layers with θ being the parameters of the
network.

B. Training Process

Having a set of NP training tuples (Xn, C̄n) where C̄n

corresponds to the true association matrix, the objective is to
maximize the cross-entropy loss [12] for the proposed ANN
architecture of Fig. 3 as follows:

Eθ =
∑
n

∑
m,k

log

[
c̄nmkp(cmk = 1;θ)+
(1− c̄nmk)× (1− p(cmk = 1;θ))

]
(4)

with c̄nmk being the true label (c̄nmk ∈ {0, 1}) associated with
the (m, k)th pixel in the nth training example, and p(cmk =
1;θ) being the same probability defined by (3) where the input

Figure 3. The proposed architecture for AP prediction using an en-
coder/decoder like network.

X has been omitted for the sake of notational brevity. We
also propose to address the binary constraints in the original
problem (2) by adding the regularizer to the objective of neural
training as:

Ẽθ = Eθ + λ
∑
n

min(2fnmk(θ),−2fnmk(θ) + 2) (5)

where fnmk = c̄nmkp(cmk = 1;θ) + (1− c̄nmk) · (1− p(cmk =
1;θ)) and λ denotes a hyper-parameter that tunes the weight
of the binary constraints in the training objective.

Parameters of the model can be now learned using the
stochastic gradient descent (SGD) or the SGD with a mo-
mentum such as ADA-Grad [12]. A summary of the training
procedure can be also found in Alg. 2 with the algorithm
delivering the association matrix, allocated power and the
corresponding SNR.

C. Threshold selection

The trained model with parameters θ is used to produce
probability scores for each entry of the association matrix
p(cmk = 1; θ). The association matrix C is now formed
by applying a threshold over each column of the output
probability matrix as follows: cτkmk = 1 if p(cmk = 1;θ) ≥ τk,
and cτkmk = 0 otherwise with τk being the kth user-specific
threshold. The thresholds can be obtained by solving the
following constrained optimization problem:

max
τk

∑
m

[
cτkmkp(cmk = 1;θ)
+(1− cτkmk)× (1− p(cmk = 1;θ))

]
st.
∑
m

cτkmk ≤ M̂k, (6)

with
∑
k M̂k = Ĉ .

1628



Algorithm 2 Training algorithm for the ANN considering the
max/min budget constraints

Init: Initial ANN parameters θ(0) and hyper-parameter λ
For epochs e from 0 to emax

1) For batch b from 0 to bmax
a) Generate a set of L tuples {(Xl, C̄l), l ∈ 0, . . . , L}

by a random selection of input Xl and running the
iterative optimization [6] to obtain the association
C̄l

b) Update the ANN weights using the objective in (5)
and the ADAM algorithm [12]

2) Stop if either the maximum number of epochs is reached
or the loss change over subsequent batches is trivial

Algorithm 3 Training data generation for a given budget and
a range of served users
Init: Number of samples nK per system load K, maximum
budget Ĉ , and training instances t = {}
For K from 4 to 64

For n from 0 to nK
1) Generate β(n)

K and compute the corresponding α(n)
K .

2) Run the iterative optimization algorithm from [6] to
obtain the power η(n)

K and association matrix C̄
(n)
K .

3) Append the triple {β(n)
K ,η

(n)
K , C̄

(n)
K } to the training set

t

V. NUMERICAL RESULTS

We consider the same piazza topology as in [6] wherein
the APs are placed along the perimeter of a [100 × 100] m2.
The large scale fading coefficient βm,k = PLm,k · SFm,k
depends on the path-loss PLm,k and the shadow fading SFm,k
and are modeled in the same way as in [1][6]. We choose
M = 128, a varying number of UEs K and a maximum FH
budget Ĉ = 60% (= 0.6 ·M ·K).

A. Training and Performance Evaluation

We train the neural-network with the ANN architecture and
using the training sequences provided by the optimization
algorithm proposed in [6]. The input to the ANN is a 128×64
image and any training instance whose number of UEs is
less than 64 is zero-padded to become compatible with the
original input. The training data are generated according to
the procedure given by Alg. 3. For this round of experiments,
nK (= 1000 for K ≤ 16 and 500 otherwise) instances are
generated per system load Kthat give 40.000 training tuples
in total. For the hyper-parameter optimization, we also choose
values of λ ∈ {0, 1, 3, 10, 100}.

Performance evaluation is done using a set of new instances
produced by Alg. 3. Having the association matrices by
both the neural-model and the ground-truth (iso near-optimal
solution from [6]), as a performance metric, the resulting worst
SNR is calculated for all the test cases and the cumulative
distribution function (cdf) of the log-scaled error between the
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Figure 4. The cdf of error in SNR for the optimization algorithm and ML
solution ∆γ = γOPT -γML.
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Figure 5. Data rate cdf from both the ML and the optimization algorithm
versus K.

neural-model and the ground-truth, i.e. ∆γ = γOPT − γML,
is depicted in Fig. 4 for different values of K where λ = 3
is chosen as the value of the regularizer that provides the best
results.

Results in Fig. 4 show that the neural-model produces
association matrices leading to SNRs that in 95% of test cases
lie in a 0.2 dB error interval. The results also verify that the
performance of the ANN model degrades when the number
of users falls down. As Fig. 4 demonstrates, the percentage
of test cases falling in the 0.1 dB interval falls from 100 in
K = 64 to 90 when K = 16 users is chosen. Therefore, the
neural-model shows near-perfect alignment with the ground-
truth when the number of users grows, which is in-line with
the purpose of AP scheduling for the m-MIMO system with a
large number of users. The corresponding SE results shown in
Fig. 5 also reveal a good match with the SNR error from Fig.
4. The SEs produced by both the ANN and the optimization
are almost identical demonstrating again the the good match
between the two approaches.

B. Time Complexity and Time-varying User Case

To study the computational efficiency of the proposed
architecture, and as the benchmark, an off-the-shelf near
globally optimal NMIP [13] solver is used to address the
joint power allocation and AP scheduling problem. A new
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Figure 6. Computational time versus K for the ML model, the optimization
algorithm of [6] and the NMIP solver.

set of test instances is now created for different values of
K ∈ {2l}, l ∈ {4, 5, 6}. For each instance, both the compu-
tational time and the resulting SNRs are calculated for three
algorithms namely 1) the optimization in [6], 2) the NMIP
solver, and 3) the proposed neural-model. To calculate the
timing, all the processing are conducted on the same Intel
Core i5-8350U CPU with the clock-frequency of 1.7 GHz.

The computational time medians from the three schemes
versus the number of UEs shown in Fig. 6 reveal a near-
polynomial complexity of the NMIP solver versus the number
of users while the optimization algorithm has been proven to
exhibit linear complexity as justified in [6]. The novel neural-
model shows near-constant complexity with the computational
time being ∼ 100 times lower than that of the optimization
algorithm for K = 64. While the discrepancy seems less
critical for K ≤ 16, it is evident from Fig. 6 that the NMIP
algorithm becomes infeasible for a large-system when going
beyond 32 UEs. Although the optimization algorithm provides
∼ 10 times better efficiency to the NMIP, it still shows some
linear complexity that will make it less-competitive for real-
time applications with a large number of time-varying users.

In addition, all the UE-specific SNRs are collapsed to
form a single vector of SNRs and, assuming the NMIP as
the benchmark, the histogram of the error is derived and its
corresponding cdf is now shown in Fig. 7. On top of the much
superior time efficiency, the neural-model is able to deliver
competitive performance to the near-optimal NMIP where
95% of test-instances report errors that fall in a 0.1 dB region.
Indeed, the results in this section clearly show that the novel
ANN-based architecture can output near-optimal solutions that
are very close to the standard solvers in terms of accuracy
while the superb computational efficiency of the model makes
it a very attractive choice for real-time applications with a
time-varying number of UEs.

VI. CONCLUSIONS

This paper proposed a novel architecture based on ANNs
and linear programming to address the challenging AP
scheduling and power allocation problems respectively in the
UL of CF m-MIMO systems. A novel neural-model was
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Figure 7. The cdf of error in SNR ∆γ = γNMIP -γ{ML/OPT} when
compared against the NMIP solver as the benchmark.

developed to generate the association matrix with the model
being trained by the data generated using a near-optimal
optimization framework. Simulation results show that beside
the competitive performance to the ground-truth and an off-
the-shelf NMIP solver as the benchmark, the ANN enjoys
much less computational complexity that makes it a perfect
choice for real-time scenarios with a time-varying system load.
The proposed architecture is agnostic to the radio topology and
therefore is applicable to any CF m-MIMO system.
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