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Abstract—Multi-Objective Optimization (MOO) has always
been an important issue in the field of wireless communications.
With the development of 5G networks, more objectives have
been concerned to improve the user experience. The relationship
between these multiple objectives is complex or even conflicting,
which increases the difficulty of solving the MOO problems.
Traditional multi-objective optimization algorithms (e.g., genetic
algorithm) have higher computation complexity and require to
store multiple models for the preference of different objectives.
Therefore, in this paper, a multi-objective scheduling model based
on the Actor-Critic framework is proposed, which can effectively
solve the multi-user scheduling problem under Massive Multiple-
Input Multiple-Output (MIMO), and utilize a single model to
approximate the Pareto frontier. In the single-cell downlink
scheduling scenario, the proposed model is applied to the two
objective optimization, i.e., channel capacity and fairness. The
simulation results show that the performance of our model is
close to the theoretical optimal value in the single-objective
case. The Pareto frontier can be uniformly approximated in the
multi-objective case, and it has strong robustness to never-seen
preference combinations.

Index Terms—Massive MIMO, multi-objective reinforcement
learning (MORL), Pareto frontier, single cell Multi-User (MU)-
MIMO scheduling

I. INTRODUCTION

Massive MIMO technology can make deep use of space
resources, enabling users within the coverage of the Base
Station (BS) to communicate with the BS on the same time-
frequency resource, and has become one of the key tech-
nologies of 5G networks [1]. The MOO problem has been
widely studied in the resource allocation of 5G networks and
has become a hot topic for Massive MIMO. The optimization
objectives include average user rates, average area rates, down-
link power, energy efficiency, throughput, fairness, construc-
tion cost, packet drop probability, etc [2]–[8]. These studies are
mainly based on traditional optimization methods or genetic
algorithms. However, as the number of antennas increases in
massive MIMO, the computational complexity of traditional
methods and genetic algorithms increases drastically.
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To reduce complexity and improve performance, in the
single-objective resource allocation scenario, researchers have
proposed many solutions based on Deep Learning (DL).
DL technology is applied in MU-MIMO to improve the
performance of resource allocation in [9] and [10], but the
exponentially increased number of scheduling combinations
makes the scale of the network even larger. Deep Reinforce-
ment Learning (DRL) regards the scheduling problem as a
sequential decision-making process, combining the advantages
of DL extraction features to obtain a scheduling policy that
maximizes the objective. An algorithm is proposed in [11] for
resource allocation based on DRL, whereas treating all user
combinations as the action space is not suitable for large user
numbers. A multi-agent RL framework constructed in [12] to
solve the problem of dimensional disaster, nevertheless, multi-
agents would consume longer decision time and larger storage
space.

MORL is used to explore multi-objective optimization prob-
lems under the framework of reinforcement learning. Those
algorithms can be mainly divided into two categories: 1)
the single-policy algorithm is devoted to finding the optimal
policy that meets a certain preference; 2) the multi-policy
algorithm is dedicated to finding the optimal policy under
different preferences to approximate the Pareto frontier. The
task of an algorithm is to obtain a more accurate and uniformly
distributed Pareto frontier approximation. Random mixing and
gradient methods are applied to MORL in [13], which
can maximize the conditional objectives simultaneously, but
no policy gradient is utilized in it. Reference [14] firstly
applied policy gradient to MORL, and proposed the Radial
Algorithm (RA) and the Pareto Following Algorithm (PFA).
However, both two algorithms needed to save corresponding
models for different preferences, which costs longer training
time and larger storage space in actual application. A single
policy proposed by [15] to approximate the Pareto frontier,
which solved the problem of saving multiple models. Nev-
ertheless, this algorithm was based on Q-Learning frame-
work [16] so that it cannot handle large-scale action spaces.

Based on the above analysis and our previous work on
policy-based DRL scheduling algorithm [10], a MORL algo-
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rithm based on the Actor-Critic framework [17] is introduced.
This model can provide the corresponding optimal policy for
the different preferences of objectives, which is convenient
for practitioners to choose an appropriate strategy. The main
contributions are summarized as follow:
• A novel MORL solution for Massive MIMO resource allo-

cation: An adaptive MORL model is proposed to approx-
imate Pareto frontier with a single model, learning the
optimal policy under different preferences. Specifically,
we find that the scheduling problem can be reduced to a
combinatorial optimization problem, which is solved by
introducing an Actor-Critic framework. This framework
is designed to provide a scheduling sequence according
to Channel State Information (CSI), which solves the
dimensional disaster issue of the action space.

• A novel training policy is proposed, which utilizes uni-
formly distributed weight sequences to train the model.
The adaptability of the model was improved and can
provide the corresponding Pareto optimal solution for the
never-seen weight sequences. The model utilizes offline
training and online learning. In the actual scheduling pro-
cess, there is no need to do complex matrix calculations
in each scheduling period any more, which can directly
predict the scheduling results by CSI.

• Simulation results illustrate that our model can utilize a
single model to achieve better approximation of Pareto
frontier performance than that of the state-of-the-art al-
gorithms. Meanwhile, our model has strong robustness
for the never-seen preference combinations.

II. PRELIMINARIES

A. Multi-objective Markov Decision Processes

The Multi-Objective Markov Decision Processes
(MOMDPs) is an extension of Markov Decision Process
(MDP), and each objective in MOMDPs has a different
reward function and discount factor. Formally, MOMDPs
can be typically defined as a tuple 〈S,A,P,R,γ〉, where
S ∈ Rn is the state space, A ∈ Rq signifies the action space,
P(s′|s, a) : S×A×S → R indicates the transition probability
of taking action a at state s transfer to state s′. R represents
a set of reward function {Rm| ∀m ∈ {1, 2, ...M}}, where
Rm(s, a) : S × A → R denotes the instant reward obtained
after performing action a at state s. γ is a set of discount
factors {γm| ∀m ∈ {1, 2, ...M}, γm ∈ [0, 1)}. The target of
an policy π in MOMDPs is to maximize a set of discounted
accumulated reward J π = {Jπm| ∀m ∈ {1, 2, ...M}}, where
Jπm can be illustrated as:

Jπm = E
s∼S,a∼π

[ ∞∑
t=0

γtmRm(st, at)

]
. (1)

B. Multi-objective Optimization

In a MOO problem, a set of Pareto optimal solution can
be obtained, which represent the optimal solution under dif-
ferent trade-off of objectives. Pareto optimal solution have the
following concepts:

Pareto dominance: For two policy π and π′, policy π
strongly dominates policy π′(π � π′) when satisfy:

∀m, Jπm ≥ Jπ
′

m ∩ ∃m, Jπm > Jπ
′

m , m ∈ {1, 2, ...M}. (2)

Pareto frontier: If there is no policy π′ satisfy π′ � π,
the policy π is a pareto optimal solution. The set of all Pareto
optimal solutions can be expressed as: Π = {π|@π′, π′ � π},
by the mapping of accumulated reward function J , we can
obtain the Pareto frontier J ∗ = {J π|π ∈ Π}.

C. Channel Capacity
Suppose the BS has Mt transmitting antennas, there are

K users in a single cell, and each user’s devices have single
receiving antennas. The signal to interference plus noise
ratio (SINR) can be computed with:

SINRk =
|hkuk|2Pk

n0 +
∑
i6=k |hkui|

2
Pi
, (3)

where hk ∈ C1×Mt denotes the channel matrix sent from the
BS to user k, Pk indicates the power allocation of user k.
[u1, ...,uK ] represents the precoding matrix and ui satisfies
‖ui‖ = 1, ui ∈ CMt×1. n0 is the noise power of environment.
According to Shannon’s theorem, we can get the channel
capacity of user k as:

Ck = W log2(1 + SINRk), (4)

where W represents channel bandwidth. The average channel
capacity is obtained by divide the number of user: C =
1
K

∑K
i=1 Ci.

D. Fairness
According to the proportional fairness scheduling algo-

rithm [18], fairness of user k at time slot t can be defined
as:

Fk[t] =
Ck[t]

Tk[t]
, (5)

where Ck[t] is the channel capacity of user k at timeslot t,
Tk[t] denotes the average throughputs of user k at timeslot t,
which can be updated with:

Tk[t+ 1] =

{
(1− λ)Tk[t] + λCk[t] k = k∗

(1− λ)Tk[t] k 6= k∗
, (6)

where λ ∈ (0, 1) is a weight factor, k∗ indicates the scheduled
user.

E. Problem Formulation
Based on the above concepts, considering maximizing chan-

nel capacity and fairness, the multi-objective optimization
problem can be formulated illustrated as:

maximize w1E(C) + w2E(F),

subject to w1 + w2 = 1, w1 ≥ 0, w2 ≥ 0,
(7)

where C = 1
T

1
K

T∑
t=0

γt1
K∑
i=1

Ci[t], F = 1
T

1
K

T∑
t=0

γt1
K∑
i=1

Fi[t],
w1, w2 represent the preference between capacity and fairness,
T denotes the length of transmission time interval (TTI), and
K indicates the number of user.
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Fig. 1. The structure of adaptive MORL.

III. ADAPTIVE MORL ALGORITHM

In this section, We begin with the definition of the MORL
issue in massive MIMO, then introduce the network structure
and the optimization targets of Actor and Critic. Finally, the
detailed updating policy of the algorithm is given. The overall
structure of our model is shown in Fig. 1.

A. MORL in Massive MIMO
Practically, the algorithm applied to the Massive MIMO

scenario to find the Pareto frontier with conflicting objectives
of capacity and fairness, making the scheduler adopts different
scales of optimal policys according to practical demands. For
single cell downlink MU-MIMO scheduling, we formulate it
as the following:
• State: st consists of channel matrix Ht and aver-

age throughput T [t], i.e., st = (Ht, T [t]). Although
P (Ht+1|Ht) depends on physical environment, whereas
the action at will influence the average throughput T [t+
1], hence the state transition satisfy the Markov property.

• Action: at is the set of users scheduled by BS at time slot
t, which belongs to discrete action space. Assuming that
the number of users is K, there will be 2K scheduling
combinations, and at ⊆ {1, 2, ...K}.

• Reward: For objective of capacity and fairness, instant
reward vector can be denoted as rt = (Ct,Ft), which can
be obtained by (4) and (5).

B. Multi-objective Critic
In the case of large action space, maintaining and updating

the Q-value table is difficult. Therefore, the target of Critic is
to predict the expected reward in the current state, i.e., V (st),
and introduce advantage function [19] to update the Actor.
Suppose our system consists of M objectives, the advantage
function of objective m is defined as:

Âmt = Gt − V (st) =

∞∑
l=t

γl−tδl, m ∈ {1, 2, ...M}, (8)

where δt ≈ rt+1 + γV (st+1) − V (st) indicates temporal
difference error, and Gt =

∑∞
l=0 γ

lrt+l denotes accumulated
reward. The optimization target for Critic networks are de-
scribed as:

L(φm) =
1

T

T∑
t=1

(
Vφm(st)−

∞∑
l=0

γlrt+l

)2

, (9)

where φm represents the parameter of Critic network for
objective m, and each Critic updates independently.

In our model, multiple fully connected layers are used to
build the Critic network structure, and the tanh function is
used to activate the output. The Critic network structure of
different training objectives is the same.

C. Adaptive Actor

To obtain a complete Pareto frontier approximation, tradi-
tional multi-objective reinforcement learning algorithms need
to adjust the weights and train the model repeatedly, which is
time-consuming, labor-intensive and wastes storage space. We
regard the multi-objective weight vector as the input to the
Actor and adjust the updating policy so that a single Actor
also can approximate the Pareto frontier.

Suppose the weight vector used for adjusting the importance
of different objectives define as wi = {w1, w2, ..wM}, hence
the update target of Actor can be illustrated as:

L(θ) = − 1

N

N∑
i=1

M∑
m=1

wm E
s

[
Âm (s, π (s,wi|θ))

]
, (10)

where θ indicates the parameter of the Actor network, and wm
satisfy wm ∈ (0, 1),

∑M
m=1 wm = 1, different i represents

different proportion of weight vector.
In our model, the inputs of the Actor are channel matrices,

average throughputs and the weight vector. Convolutional
neural networks are used to capture the correlation of channel
states and average throughputs between different users. After
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concatenating with the weight vector, passing the multiple
fully-connected layer and activating with sigmoid function,
the schedule probability vector with a dimension of the number
of users is obtained. Finally, executing sampling or argmax
operation on schedule probability vector, the scheduling result
for all users is generated.

The detailed updating policy of our model is described in
Algorithm 1. First of all, we determine a series of uniform
distributed weight vectors. Under a given weight vector, the
Actor interacts with the environment and generates trajecto-
ries. Then the trajectory and the corresponding weight vector
are pushed into the replay buffer. The Critic network of each
objective is updated in turn, and finally the Actor network will
be updated.

Algorithm 1 Adaptive Multi-objective RL
1: Initialize Actor parameter θ.
2: Initialize Critic parameters {φ1, φ2...φm}.
3: Setting weight vector sequence {w1,w2, ...wN}.
4: for episode number in {1,2,...K} do
5: for index i in {1,2,...N} do
6: for step t in {1,2,...T} do
7: select an action by at = π(st,wi|θ).
8: perform action at and obtain a new state st+1

and reward vector rt = {r1t , r2t , ...rmt }.
9: push {st, at, rt, st+1,wi} into replay buffer.

10: end for
11: end for
12: for index m in {1,2,...M} do
13: update Critic m with (9)
14: end for
15: update Actor with (10)
16: end for

IV. EXPERIMENTS

A. Configuration

The channel matrices H are generated by our 5G wireless
simulation platform based on the 3GPP 3D-UMa channel
model [20] with ray-tracing data. A BS with 8 transmitting
antennas and 10 users is configured. Each user has one
receiving antennas, the transmit power of BS is 0.25w and
noise power n0 id configured as 2.84e−13w.

The model uses online learning, and the exploration rate is
0.5. The learning rate of our Critic and Actor is configured as
1e−3, and the decay of learning rate is assigned as 1e−4. The
update coefficient of average throughput λ is set as 0.9. All
discount factors are the same as 0.95. Using a replay buffer
with a size of 1750 to store trajectories and setting the length
of TTI as 50.

B. Analysis

1) Validity of single objective: To verify the effectiveness
of the model, two single-objective networks are designed to
maximize the capacity and fairness performance, respectively.
Meanwhile, the greedy policy is set for comparison, which

is obtained by following procedure: 1) Traverse scheduling
combinations of each TTI and select the scheduling sequence
that can maximize the objective in the current TTI; 2) Sum
up the objective value of each TTI. The model convergence
curve is shown in Fig. 2.

Fig. 2. Learning performance of capacity and fairness.

These training processes indicate that when taking capacity
as objective, the performance of our model close to the value
obtained by the greedy policy. When maximizing fairness
reward, the model can obtain higher fairness than the value
computed by the greedy policy, which means our model can
capture the characteristics of the channel environment and give
a scheduling result closer to the theoretical optimal fairness.
In summary, in a single-objective environment, our model can
provide an optimal schedule policy for different objectives.

2) Approximate Pareto frontier: Because the Pareto-
Manifold Gradient Algorithm (PMGA) [21] cannot generate
a million-level parameter space as the parameters of a DL
network. Therefore, to verify the effect of the model approxi-
mation of the Pareto frontier, we compare our model with RA
and PFA. The initial weight is generated by the following rule:

wi = {αi, 1− αi}, αi = αi−1 + i× d, (11)

where αi ∈ [0, 1]. Set α0 = 0, d = 0.1 for our model, and
α0 = 0, d = 0.2 for RA. PFA needs a two-step update rule.
Firstly, move from the Pareto optimal solution with weight
vector {1, 0}, then alternately training the model with weights
vector {0, 1}, {0.5, 0.5}. Seven times of the two-step updates
are performed. The experiment result is shown in Fig. 3.

Fig. 3. Pareto frontier approximation.

The simulation results indicate that the performance of our
model is similar to PFA and better than RA. However, the
PFA corresponding model needs to be saved when converging
to a different Pareto optimal solution. The practitioner does
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not know the preference corresponding to this Pareto optimal
solution. RA also has the problem of storing multiple models.
Only one model needs to be stored in our algorithm and
can provide optimal policy according to the preference vector,
which is convenient for practitioners to choose an appropriate
strategy.

Fig. 4. Adaptiveness of model.

3) Adaptiveness: To verify the adaptability of our model,
i.e. whether the model can give the correct Pareto optimal
solution when encountering an unknown preference vector, we
utilize (11) and configure d = 0.005 to generate a set of
weights that the model has never seen in the training process.
The approximate optimal Pareto solutions of the model are
shown in Fig. 4.

The result illustrates that even if the model has never seen
these weight vectors, it can still provide the optimal policy for
the corresponding preference. In other words, the model can
be trained with a limited number of weights to approximate
the entire Pareto frontier. Of course, there have certain re-
quirements for the selection of weights, which must be evenly
distributed and include the weights are used to maximize the
single objective. Therefore, our model has strong applicability
and the ability to satisfy all preference requirements raised by
practitioners.

V. CONCLUSION

To make it convenient for the practitioner to choose cor-
responding policies for different demands, a novel Actor-
Critic framework of MORL is proposed. This framework is
used to approximate the Pareto frontier with the optimization
objectives of maximizing channel capacity and fairness in
massive MIMO systems. The simulation results show that,
for single-objective optimization, our model simplifies the
scheduling problem into a combinatorial optimization prob-
lem, and solves the dimensional disasters problem in Massive
MIMO technology as the number of users increases. For multi-
objective optimization, we employ a single model to achieve
better performance than the state-of-the-art multi-policy al-
gorithm on Pareto frontier approximation. Furthermore, The
model can still predict the corresponding optimal scheduling
policy when encountering a never-seen preference. With the
support of multi-agent technology, in the future, we will add
other objectives and extend our model to solve multi-cell
communication scheduling issues.
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